982 resultados para Orion DBMS, Database, Uncertainty, Uncertain values, Benchmark
Resumo:
We report on a series of experiments that test the effects of an uncertain supply on the formation of bids and prices in sequential first-price auctions with private-independent values and unit-demands. Supply is assumed uncertain when buyers do not know the exact number of units to be sold (i.e., the length of the sequence). Although we observe a non-monotone behavior when supply is certain and an important overbidding, the data qualitatively support our price trend predictions and the risk neutral Nash equilibrium model of bidding for the last stage of a sequence, whether supply is certain or not. Our study shows that behavior in these markets changes significantly with the presence of an uncertain supply, and that it can be explained by assuming that bidders formulate pessimistic beliefs about the occurrence of another stage.
Resumo:
A contingent contract in a transferable utility game under uncertainty specifies an outcome for each possible state. It is assumed that coalitions evaluate these contracts by considering the minimal possible excesses. A main question of the paper concerns the existence and characterization of efficient contracts. It is shown that they exist if and only if the set of possible coalitions contains a balanced subset. Moreover, a characterization of values that result in efficient contracts in the case of minimally balanced collections is provided.
Resumo:
The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an "ensemble of opportunity" of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21st century, up-to and after the time when ozone concentrations return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels.
Resumo:
Catastrophe risk models used by the insurance industry are likely subject to significant uncertainty, but due to their proprietary nature and strict licensing conditions they are not available for experimentation. In addition, even if such experiments were conducted, these would not be repeatable by other researchers because commercial confidentiality issues prevent the details of proprietary catastrophe model structures from being described in public domain documents. However, such experimentation is urgently required to improve decision making in both insurance and reinsurance markets. In this paper we therefore construct our own catastrophe risk model for flooding in Dublin, Ireland, in order to assess the impact of typical precipitation data uncertainty on loss predictions. As we consider only a city region rather than a whole territory and have access to detailed data and computing resources typically unavailable to industry modellers, our model is significantly more detailed than most commercial products. The model consists of four components, a stochastic rainfall module, a hydrological and hydraulic flood hazard module, a vulnerability module, and a financial loss module. Using these we undertake a series of simulations to test the impact of driving the stochastic event generator with four different rainfall data sets: ground gauge data, gauge-corrected rainfall radar, meteorological reanalysis data (European Centre for Medium-Range Weather Forecasts Reanalysis-Interim; ERA-Interim) and a satellite rainfall product (The Climate Prediction Center morphing method; CMORPH). Catastrophe models are unusual because they use the upper three components of the modelling chain to generate a large synthetic database of unobserved and severe loss-driving events for which estimated losses are calculated. We find the loss estimates to be more sensitive to uncertainties propagated from the driving precipitation data sets than to other uncertainties in the hazard and vulnerability modules, suggesting that the range of uncertainty within catastrophe model structures may be greater than commonly believed.
Resumo:
This paper presents a method for calculating the power flow in distribution networks considering uncertainties in the distribution system. Active and reactive power are used as uncertain variables and probabilistically modeled through probability distribution functions. Uncertainty about the connection of the users with the different feeders is also considered. A Monte Carlo simulation is used to generate the possible load scenarios of the users. The results of the power flow considering uncertainty are the mean values and standard deviations of the variables of interest (voltages in all nodes, active and reactive power flows, etc.), giving the user valuable information about how the network will behave under uncertainty rather than the traditional fixed values at one point in time. The method is tested using real data from a primary feeder system, and results are presented considering uncertainty in demand and also in the connection. To demonstrate the usefulness of the approach, the results are then used in a probabilistic risk analysis to identify potential problems of undervoltage in distribution systems. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Late Permian mass extinction event about 252 million years ago was the most severe biotic crisis of the past 500 million years and occurred during an episode of global warming. The loss of around two-thirds of marine genera is thought to have had substantial ecological effects, but the overall impacts on the functioning of marine ecosystems and the pattern of marine recovery are uncertain. Here we analyse the fossil occurrences of all known benthic marine invertebrate genera from the Permian and Triassic periods, and assign each to a functional group based on their inferred lifestyle. We show that despite the selective extinction of 62-74% of these genera, all but one functional group persisted through the crisis, indicating that there was no significant loss of functional diversity at the global scale. In addition, only one new mode of life originated in the extinction aftermath. We suggest that Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed. Functional diversity was, however, reduced in particular regions and habitats, such as tropical reefs; at these smaller scales, recovery varied spatially and temporally, probably driven by migration of surviving groups. We find that marine ecosystems did not return to their pre-extinction state, and by the Middle Triassic greater functional evenness is recorded, resulting from the radiation of previously subordinate groups such as motile, epifaunal grazers.
Resumo:
PART I:Cross-section uncertainties under differentneutron spectra. PART II: Processing uncertainty libraries
Resumo:
BAliBASE is specifically designed to serve as an evaluation resource to address all the problems encountered when aligning complete sequences. The database contains high quality, manually constructed multiple sequence alignments together with detailed annotations. The alignments are all based on three-dimensional structural superpositions, with the exception of the transmembrane sequences. The first release provided sets of reference alignments dealing with the problems of high variability, unequal repartition and large N/C-terminal extensions and internal insertions. Here we describe version 2.0 of the database, which incorporates three new reference sets of alignments containing structural repeats, transmembrane sequences and circular permutations to evaluate the accuracy of detection/prediction and alignment of these complex sequences. BAliBASE can be viewed at the web site http://www-igbmc.u-strasbg.fr/BioInfo/BAliBASE2/index.html or can be downloaded from ftp://ftp-igbmc.u-strasbg.fr/pub/BAliBASE2/.
Resumo:
Authors from Burrough (1992) to Heuvelink et al. (2007) have highlighted the importance of GIS frameworks which can handle incomplete knowledge in data inputs, in decision rules and in the geometries and attributes modelled. It is particularly important for this uncertainty to be characterised and quantified when GI data is used for spatial decision making. Despite a substantial and valuable literature on means of representing and encoding uncertainty and its propagation in GI (e.g.,Hunter and Goodchild 1993; Duckham et al. 2001; Couclelis 2003), no framework yet exists to describe and communicate uncertainty in an interoperable way. This limits the usability of Internet resources of geospatial data, which are ever-increasing, based on specifications that provide frameworks for the ‘GeoWeb’ (Botts and Robin 2007; Cox 2006). In this paper we present UncertML, an XML schema which provides a framework for describing uncertainty as it propagates through many applications, including online risk management chains. This uncertainty description ranges from simple summary statistics (e.g., mean and variance) to complex representations such as parametric, multivariate distributions at each point of a regular grid. The philosophy adopted in UncertML is that all data values are inherently uncertain, (i.e., they are random variables, rather than values with defined quality metadata).
Resumo:
The Protein pKa Database (PPD) v1.0 provides a compendium of protein residue-specific ionization equilibria (pKa values), as collated from the primary literature, in the form of a web-accessible postgreSQL relational database. Ionizable residues play key roles in the molecular mechanisms that underlie many biological phenomena, including protein folding and enzyme catalysis. The PPD serves as a general protein pKa archive and as a source of data that allows for the development and improvement of pKa prediction systems. The database is accessed through an HTML interface, which offers two fast, efficient search methods: an amino acid-based query and a Basic Local Alignment Search Tool search. Entries also give details of experimental techniques and links to other key databases, such as National Center for Biotechnology Information and the Protein Data Bank, providing the user with considerable background information.
Resumo:
A szerző a 2008-ban kezdődött gazdasági világválság hatását vizsgálja az egy részvényre jutó nyereség előrejelzésének hibájára. Számos publikáció bizonyította, hogy az elemzők a tényértékeknél szisztematikusan kedvezőbb tervértéket adnak meg az egy részvényre jutó előrejelzéseikben. Más vizsgálatok azt igazolták, hogy az egy részvényre jutó előrejelzési hiba bizonytalan környezetben növekszik, míg arra is számos bizonyítékot lehet találni, hogy a negatív hírek hatását az elemzők alulsúlyozzák. A gazdasági világválság miatt az elemzőknek számtalan negatív hírt kellett figyelembe venniük az előrejelzések készítésekor, továbbá a válság az egész gazdaságban jelentősen növelte a bizonytalanságot. A szerző azt vizsgálja, hogy miként hatott a gazdasági világválság az egy részvényre jutó nyereség- előrejelzés hibájára, megkülönböztetve azt az időszakot, amíg a válság negatív hír volt, attól, amikor már hatásaként jelentősen megnőtt a bizonytalanság. _____ The author investigated the impact of the financial crisis that started in 2008 on the forecasting error for earnings per share. There is plentiful evidence from the 1980s that analysts give systematically more favourable values in their earnings per share (EPS) forecasts than reality, i.e. they are generally optimistic. Other investigations have supported the idea that the EPS forecasting error is greater under uncertain environmental circumstances, while other researchers prove that the analysts under-react to the negative information in their forecasts. The financial crisis brought a myriad of negative information for analysts to consider in such forecasts, while also increasing the level of uncertainty for the entire economy. The article investigates the impact of the financial crisis on the EPS forecasting error, distinguishing the period when the crisis gave merely negative information, from the one when its effect of uncertainty was significantly increased over the entire economy.
Resumo:
This paper deals with a very important issue in any knowledge engineering discipline: the accurate representation and modelling of real life data and its processing by human experts. The work is applied to the GRiST Mental Health Risk Screening Tool for assessing risks associated with mental-health problems. The complexity of risk data and the wide variations in clinicians' expert opinions make it difficult to elicit representations of uncertainty that are an accurate and meaningful consensus. It requires integrating each expert's estimation of a continuous distribution of uncertainty across a range of values. This paper describes an algorithm that generates a consensual distribution at the same time as measuring the consistency of inputs. Hence it provides a measure of the confidence in the particular data item's risk contribution at the input stage and can help give an indication of the quality of subsequent risk predictions. © 2010 IEEE.
Resumo:
A decision-maker, when faced with a limited and fixed budget to collect data in support of a multiple attribute selection decision, must decide how many samples to observe from each alternative and attribute. This allocation decision is of particular importance when the information gained leads to uncertain estimates of the attribute values as with sample data collected from observations such as measurements, experimental evaluations, or simulation runs. For example, when the U.S. Department of Homeland Security must decide upon a radiation detection system to acquire, a number of performance attributes are of interest and must be measured in order to characterize each of the considered systems. We identified and evaluated several approaches to incorporate the uncertainty in the attribute value estimates into a normative model for a multiple attribute selection decision. Assuming an additive multiple attribute value model, we demonstrated the idea of propagating the attribute value uncertainty and describing the decision values for each alternative as probability distributions. These distributions were used to select an alternative. With the goal of maximizing the probability of correct selection we developed and evaluated, under several different sets of assumptions, procedures to allocate the fixed experimental budget across the multiple attributes and alternatives. Through a series of simulation studies, we compared the performance of these allocation procedures to the simple, but common, allocation procedure that distributed the sample budget equally across the alternatives and attributes. We found the allocation procedures that were developed based on the inclusion of decision-maker knowledge, such as knowledge of the decision model, outperformed those that neglected such information. Beginning with general knowledge of the attribute values provided by Bayesian prior distributions, and updating this knowledge with each observed sample, the sequential allocation procedure performed particularly well. These observations demonstrate that managing projects focused on a selection decision so that the decision modeling and the experimental planning are done jointly, rather than in isolation, can improve the overall selection results.