48 resultados para Organoclays
Resumo:
Understanding the interlayer swelling and molecular packing in organoclays is important to the formation and design of polymer nanocomposites. This paper presents recent experimental and molecular simulation studies on a variety of organoclays that show a linear relationship between the increase of d-spacing and the mass ratio between organic and clay. A denser molecular packing is observed in organoclays containing surfactants with hydroxyl-ethyl units. Moreover, our simulation results show that the head (nitrogen) groups are essentially tethered to the clay surface while the long hydrocarbon chains tend to adopt a layering structure with disordered conformation, which contrasts with the previous assumptions of either the chains lying parallel to the clay surface or being tilted at rather precise angles. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Thermal analysis and differential thermal analysis offers a means of studying the desorption of acids such as stearic acid from clay surfaces. Both adsorption and chemisorption can be distinguished through the differences in the temperature of the mass losses. Increased adsorption is achievable by adsorbing onto a surfactant adsorbed montmorillonite. Stearic acid sublimes at 179 °C but when adsorbed upon montmorillonite sublimes at 207 and 248 °C. These mass loss steps are ascribed to the desorption of the stearic acid on the external surfaces of the organoclays and from the de-chemisorption from the surfactant held in the interlayer of the montmorillonite.
Resumo:
High resolution thermogravimetric analysis (TGA) has attracted much attention in the synthesis of organoclays and its applications. In this study, organoclays were synthesised through ion exchange of a single cationic surfactant for sodium ions, and characterised by methods including X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The changes of surface properties in montmorillonite and organoclays intercalated with surfactant were determined using XRD through the changes in the basal spacing. The thermogravimetric analysis (TGA) was applied in this study to investigate more information of the configuration and structural changes in the organoclays with thermal decomposition. There are four different decompositions steps in differential thermogravimetric (DTG) curves. The obtained TG steps are relevant to the arrangement of the surfactant molecules intercalated in montmorillonite and the thermal analysis indicates the thermal stability of surfactant modified clays. This investigation provides new insights into the properties of organoclays and is important in the synthesis and processing of organoclays for environmental applications.
Resumo:
Today, there are growing concerns about the presence of environmental pollutants in many parts of the world. In particular, a lot of attention has been drawn to the levels of water and soil contaminants (de Paiva et al., 2008). The majority of these contaminants consist of NOCs (non-ionic organic compounds) and can enter our waterways through industrial activities, mining operations, crop and animal production, waste disposal and accidental leakage (de Paiva et al., 2008; Park et al., 2011). Therefore, there is an increased interest in the synthesis of new materials that can be used to remove potentially carcinogenic and toxic water contaminants. Smectite type organoclays are widely used in numerous applications, such as sorbent agents for environmental remediation, due to their unique properties (Jiunn-Fwu et al., 1990; Sheng et al., 1996; Zhou et al., 2007; Bektas et al., 2011; Park et al., 2011). This investigation focuses on beidellite (SBId-1), which belongs to the smectite clay family. Their properties include high cation exchange capacity (CEC), swelling properties, porous, high surface area and consequential strong adsorption/absorption capacity (Xi et al., 2007). However, swelling clays in general are not an effective sorbent agent in nature due to their hydrophilic properties. The hydrophilic properties of the clay can be changed to organophilic by intercalating a cationic surfactant. Many applications of organoclays are strongly dependent on their structural properties and hence, a better understanding of the configuration and structural change of organoclay is crucial. Organoclays were synthesised through ion exchange of 21CODTMA (MW: 392.5 g mol-1) and characterised using XRD and FTIR spectroscopy. This study investigates the structural and conformational changes of beidellite intercalated with octadecyltrimethylammonium bromide.
Resumo:
Three long chain cationic surfactants were intercalated into Ca-montmorillonite through ion exchangeand the obtained organoclays were characterized by X-ray diffraction (XRD), high resolution thermo-gravimetric analysis (TG) and Raman spectroscopy. The intercalation of surfactants not only changes thesurface properties of clay from hydrophilic to hydrophobic but also greatly increases the basal spacing ofthe interlayers based on XRD analysis. The thermal stability of organoclays intercalated with three sur-factants (TTAB, DTAB and CTAB) and the different arrangements of the surfactant molecules intercalatedinto Ca-montmorillonite were determined by TG-DTG analysis. A Raman spectroscopic study on the Ca-montmorillonite modified by three surfactants prepared at different concentrations provided the detailedconformational ordering of different intercalated long-chain surfactants under different conditions. Thewavenumber of the antisymmetric stretching mode is more sensitive than that of the symmetric stretch-ing mode to the mobility of the tail of the amine chain. At room temperature, the conformational orderingis more easily affected by the packing density in the lateral model. With the increase of the temperature,the positions of both the antisymmetric and symmetric stretching bands shift to higher wavenumbers,which indicates a decrease of conformational ordering. This study offers new insights into the struc-ture and properties of Ca-montmorillonite modified with different long chain surfactants. Moreover, theexperimental results confirm the potential applications of organic Ca-montmorillonites for the removalof organic impurities from aqueous media.
Resumo:
This thesis offered a step forward in the development of cheap and effective materials for water treatment. It described the modification of naturally abundant clay minerals with organic molecules, and used the modified clays as effective adsorbents for the removal of recalcitrant organic water pollutants. The outcome of the study greatly extended our understanding of the synthesis and characteristic properties of clay and modified clay minerals, provided optimistic evaluation of the modified clays for environmental remediation and offered potential utility for clay minerals in the industry and environment.
Resumo:
Organo Arizona SAz-2 Ca-montmorillonite was prepared with different surfactant (DDTMA and HDTMA) loadings through direct ion exchange. The structural properties of the prepared organoclays were characterized by XRD and BET instruments. Batch experiments were carried out on the adsorption of bisphenol A (BPA) under different experimental conditions of pH and temperature to determine the optimum adsorption conditions. The hydrophobic phase and positively charged surface created by the loaded surfactant molecules are responsible for the adsorption of BPA. The adsorption of BPA onto organoclays is well described by pseudo-second order kinetic model and the Langmuir isotherm. The maximum adsorption capacity of the organoclays for BPA obtained from a Langmuir isotherm was 151.52 mg/g at 297 K. This value is among the highest values for BPA adsorption compared with other adsorbents. In addition, the adsorption process was spontaneous and exothermic based on the adsorption thermodynamics study. The organoclays intercalated with longer chain surfactant molecules possessed a greater adsorption capacity for BPA even under alkaline conditions. This process provides a pathway for the removal of BPA from contaminated waters.
Resumo:
Dodecylamine was successfully intercalated into the layer space of kaolinite by utilizing the methanol treated kaolinite–dimethyl sulfoxide (DMSO) intercalation complex as an intermediate. The basal spacing of kaolinite, measured by X-ray diffraction (XRD), increased from 0.72 nm to 4.29 nm after the intercalation of dodecylamine. Also, the significant variation observed in the Fourier Transform Infrared Spectroscopy (FTIR) spectra of kaolinite when intercalated with dodecylamine verified the feasibility of intercalation of dodecylamine into kaolinite. Isothermal-isobaric (NPT) molecular dynamics simulation with the use of Dreiding force field was performed to probe into the layering behavior and structure of nanoconfined dodecylamine in the kaolinite gallery. The concentration profiles of the nitrogen atom, methyl group and methylene group of intercalated dodecylamine molecules in the direction perpendicular to the kaolinite basal surface indicated that the alkyl chains within the interlayer space of kaolinite exhibited an obvious layering structure. However, the unified bilayer, pseudo-trilayer, or paraffin-type arrangements of alkyl chains deduced based on their chain length combined with the measured basal spacing of organoclays were not found in this study. The alkyl chains aggregated to a mixture of ordered paraffin-type-like structure and disordered gauche conformation in the middle interlayer space of kaolinite, and some alkyl chains arranged in two bilayer structures, in which one was close to the silica tetrahedron surface, and the other was close to the alumina octahedron surface with their alkyl chains parallel to the kaolinite basal surface.
Resumo:
Organic surfactants modified clay minerals are usually used as adsorbents for hydrophobic organic contaminants remediation; this work however has shown organoclays can also work as adsorbents for hydrophilic anionic contaminant immobilization. Organoclays were prepared based on halloysite, kaolinite and bentonite and used for nitrate adsorption, which are significant for providing mechanism for the adsorption of anionic contaminants from waste water. XRD was used to characterize unmodified and surfactants modified clay minerals. Thermogravimetric analysis (TG) was used to determine the thermal stability and actual loading of surfactant molecules. Ion chromatography (IC) was used to determine changes of nitrate concentration before and after adsorption by these organoclays. These organoclays showed different removal capacities for anionic ions from water and adsorption mechanism was investigated.
Resumo:
The development of semi aromatic polyamide/organoclays nanocomposites (PANC) is reported in this communication. New polyamide (PA) was successfully synthesized through direct polycondensation reaction between bio-based diacid and aromatic diamine. PA exhibited strong UV vis absorption band at 412 nm. Its photoluminescence spectrum showed maximum band at 511 nm in the green region. The surface modification of montmorillonite was carried out through ion-exchange reaction using 1,4-bis[4-aminophenoxy]butane (APB) as a modifier. Then PANCs containing 3 and 6 wt.% of the modified montmorillonite (MMT-APB) were prepared. Flammability and thermal properties of PA and the nanocomposites were studied by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA results in both air and nitrogen atmospheres indicated improving in thermal properties of PANCs compared to the neat PA. According to MCC analysis, a 31.6% reduction in pHRR value has been achieved by introducing 6 wt.% of the organoclay in PA matrix.
Resumo:
The surfaces of natural beidellite were modified with cationic surfactant octadecyl trimethylammonium bromide at different concentrations. The organo-beidellite adsorbent materials were then used for the removal of atrazine with the goal of investigating the mechanism for the adsorption of organic triazine herbicide from contaminated water. Changes on the surfaces and structure of beidellite were characterised by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and BET surface analysis. Kinetics of the adsorption studies were also carried out which show that the adsorption capacity of the organoclays increases with increasing surfactant concentration up until 1.0 CEC surfactant loading, after which the adsorption capacity greatly decreases. TG analysis reveals that although the 2.0 CEC sample has the greatest percentage of surfactant by mass, most of it is present on external sites. The 0.5 CEC sample has the highest proportion of surfactant exchanged into the internal active sites and the 1.0 CEC sample accounts for the highest adsorption capacity. The goodness of fit of the pseudo-second order kinetic confirms that chemical adsorption, rather than physical adsorption, controls the adsorption rate of atrazine.
Resumo:
This investigation for the removal of agricultural pollutants, imazaquin and atrazine was conducted using montmorillonite (MMT) exchanged with organic cations through ion exchange. The study found that the adsorption of the herbicides was affected by the degree of organic cation saturations, the size of organic cations and the different natures of the herbicides. The modified clays intercalated with the larger surfactant molecules at the higher concentrations tended to enhance the adsorption of imazaquin and atrazine. In particular, the organoclays were highly efficient for the removal of imazaquin while the adsorption of atrazine was minimal due to the different hydrophobicities. Both imazaquin and atrazine were influenced by the changes of pH. The amphoteric imazaquin exists as an anion at the pH 5–7 and the anionic imazaquin was protonated to a neutral and further a cationic form when the pH is lower. The weak base, atrazine was also protonated at lower pH values. The anionic imazaquin had a strong affinity to the organoclays on the external surface as well as in the interlayer space of the MMT through electrostatic and hydrophobic interactions. In this study, the electrostatic interaction can be the primary mechanism involved during the adsorption process. This study also investigated a comparative adsorption for the imazaquin and atrazine and the lower adsorption of atrazine was enhanced and this phenomenon was due to the synergetic effect. This work highlights a potential mechanism for the removal of specific persistence herbicides from the environment.
Resumo:
Remediation of bisphenol A (BPA) from aqueous solutions by adsorption using organoclays synthesized from montmorillonite (MMT) with different types of organic surfactant molecules was demonstrated. High adsorption capacities of the organoclays for the uptake of BPA were observed and these demonstrated their potential application as strong adsorbents for noxious organic water contaminants. The adsorption of BPA was significantly influenced by pH, with increased adsorption of BPA in acidic pH range. However, the organoclays intercalated with highly loaded surfactants and/or large surfactant molecules were less influenced by the pH of the environment and this was thought to be due to the shielding the negative charge from surfactant molecules and the development of more positive charge on the clay surface, which leads to the attraction of anionic BPA even at alkaline pH. The hydrophobic phase created by loaded surfactant molecules contributed to a partitioning phase, interacting with BPA molecules strongly through hydrophobic interaction. Pseudo-second order kinetic model and Langmuir isotherm provided the best fit for the adsorption of BPA onto the organoclays. In addition, the adsorption process was spontaneous and exothermic with lower temperature facilitating the adsorption of BPA onto the organoclays. The described process provides a potential pathway for the removal of BPA from contaminated waters.
Resumo:
Bisphenol-A (BPA) adsorption onto inorganic-organic clays (IOCs) was investigated. For this purpose, IOCs synthesised using octadecyltrimethylammonium bromide (ODTMA, organic modifier) and hydroxy aluminium (Al13, inorganic modifier) were used. Three intercalation methods were employed with varying ODTMA concentration in the synthesis of IOCs. Molecular interactions of clay surfaces with ODTMA and Al13 and their arrangements within the interlayers were determined using Fourier transform infrared spectroscopy (FTIR). Surface area and porous structure of IOCs were determined by applying Brunauer, Emmett, and Teller (BET) method to N2 adsorption-desorption isotherms. Surface area decreased upon ODTMA intercalation while it increased with Al13 pillaring. As a result, BET specific surface area of IOCs was considerably higher than those of organoclays. Initial concentration of BPA, contact time and adsorbent dose significantly affected BPA adsorption into IOCs. Pseudo-second order kinetics model is the best fit for BPA adsorption into IOCs. Both Langmuir and Freundlich adsorption isotherms were applicable for BPA adsorption (R2 > 0.91) for IOCs. Langmuir maximum adsorption capacity for IOCs was as high as 109.89 mg g‒1 and it was closely related to the loaded ODTMA amount into the clay. Hydrophobic interactions between long alkyl chains of ODTMA and BPA are responsible for BPA adsorption into IOCs.