983 resultados para Organic-rich Strata


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complete records of organic-carbon-rich Cretaceous strata were continuouslycored on the flanks of the Mid-Pacific Mountains and southern Hess Rise in the central North Pacific Ocean during DSDP Leg 62. Organic-carbon-rich laminated silicified limestones were deposited in the western Mid-Pacific Mountains during the early Aptian, a time when that region was south of the equator and considerably shallower than at present. Organic-carbon-rich, laminated limestone on southern Hess Rise overlies volcanic basement and includes 136 m of stratigraphic section of late Albian to early Cenomanian age. This limestone unit was deposited rapidly as Hess Rise was passing under the equatorial high-productivity zone and was subsiding from shallow to intermediate depths. The association of volcanogenic components with organic-carbon-rich strata on Hess Rise in the Mid-Pacific Mountains is striking and suggests that there was a coincidence of mid-plate volcanic activity and the production and accumulation of organic matter at intermediate water depths in the tropical Pacific Ocean during the middle Cretaceous. Pyrolysis assays and analyses of extractable hydrocarbons indicate that the organic matter in the limestone on Hess Rise is composed mainly of lipid-rich kerogen derived from aquatic marine organisms and bacteria. Limestones from the Mid-Pacific Mountains generally contain low ratios of pyrolytic hydrocarbons to organic carbon and low hydrogen indices, suggesting that the organic matter may contain a significant proportion of land-derived material, possibly derived from numerous volcanic islands that must have existed before the area subsided. The organic carbon in all samples analyzed is isotopically light (d13C -24 to -29 per mil) relative to most modern rine organic carbon, and the lightest carbon is also the most lipid-rich. There is a positive linear correlation between sulfur and organic carbon in samples from Hess Rise and from the Mid-Pacific Mountains. The slopes and intercepts of C-S regression lines however, are different for each site and all are different from regression lines for samples from modern anoxic marine sediments and from Black Sea cores. The organic-carbon-rich limestones on Hess Rise, the Mid-Pacific Mountains, and other plateaus and seamounts in the Pacific Ocean are not synchronous but do occur within the same general middle Cretaceous time period as organic-carbon-rich lithofacies elsewhere in the world ocean, particularly in the Atlantic Ocean. Strata of equivalent age in the deep basins of the Pacific Ocean are not rich in organic carbon, and were deposited in oxygenated environments. This observation, together with the evidence that the plateau sites were considerably shallower and closse to the equator during the middle Creataceous suggests that local tectonic and hydrographic conditions may have resulted in high surface-water productivity and the preservation of organic matter in an oxygen-deficient environment where an expanded mid-water oxygen minimum developed and impinged on elevated platforms and seamounts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geochemical studies of Cretaceous strata rich in organic carbon (OC) from Deep Sea Drilling Project (DSDP) sites and several land sections reveal several consistent relationships among amount of OC, hydrocarbon generating potential of kerogen (measured by pyrolysis as the hydrogen index, HI), and the isotopic composition of the OC. First, there is a positive correlation between HI and OC in strata that contain more than about 1% OC. Second, percent OC and HI often are negatively correlated with carbon isotopic composition (delta13C) of kerogen. The relationship between HI and OC indicates that as the amount of organic matter increases, this organic matter tends to be more lipid rich reflecting the marine source of the organic matter. Cretaceous samples that contain predominantly marine organic matter tend to be isotopically lighter than those that contain predominantly terrestrial organic matter. Average delta13C values for organic matter from most Cretaceous sites are between -26 and -28 per mil, and values heavier than about -25 per mil occur at very few sites. Most of the delta13C values of Miocene to Holocene OC-rich strata and modern marine plankton are between -16 to -23 per mil. Values of delta13C of modern terrestrial organic matter are mostly between -23 and -33 per mil. The depletion of terrestial OC in 13C relative to marine planktonic OC is the basis for numerous statements in the literature that isotopically light Cretaceous organic matter is of terrestrial origin, even though other organic geochemical and(or) optical indicators show that the organic matter is mainly of marine origin. A difference of about 5 per mil in delta13C between modern and Cretaceous OC-rich marine strata suggests either that Cretaceous marine planktonic organic matter had the same isotopic signature as modern marine plankton and that signature has been changed by diagenesis, or that OC derived from Cretaceous marine plankton was isotopically lighter by about 5 per mil relative to modern plankton OC. Diagenesis does not produce a significant shift in delta13C in Miocene to Holocene sediments, and therefore probably did not produce the isotopically light Cretaceous OC. This means that Cretaceous marine plankton must have had delta13C values that were about 5 per mil lighter than modern marine plankton, and at least several per mil lighter than Cretaceous terrestrial vegetation. The reason for these lighter values, however, is not obvious. It has been proposed that concentrations of CO2 were higher during the middle Cretaceous, and this more available CO2 may be responsible for the lighter delta13C values of Cretaceous marine organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mid-Cretaceous sediments recovered during Ocean Drilling Program Leg 183 (Cores 183-1138A-69R to 73R) on the central Kerguelen Plateau have been analyzed palynologically and paleobotanically to determine the age of the strata and to reconstruct vegetational development and paleoecology. The lower strata (Cores 183-1138A-71R to 73R), a dark, organic-rich silty claystone with many wood fragments and fern remains (sedimentary Unit VI), certainly of terrestrial origin, directly overlies the volcanic basement, which is dated as latest Albian (~95 to 103 Ma) to earliest Cenomanian. The age of the terrestrial strata can be determined by sporomorphs as late Albian to earliest Cenomanian as well. This shows that parts of the central Kerguelen Plateau must have been subaerial at least until the late Albian and were covered with a diverse high-latitude flora, probably dense conifer forest with various fern taxa in the undergrowth. Early angiosperms are also present. The vegetational character represented in Unit VI did not change significantly through time. However, varying percentages of several sporomorph groups seem to show recurring abundance variations, which might possibly be cyclic, caused by Milankovitch-type cyclic events. Cores 183-1138A-67R through 69R, of open marine origin, contain medium- to high-diversity dinocyst assemblages. Based on previous stratigraphic zonation schemes, the ages of these strata range within the Heterosphaeridium Superzone, from the Palaeohystrichophora infusorioides Zone to the Conosphaeridium striatoconus Zone, which correlates to the latest Cenomanian to Coniacian.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

20 samples of soil or sediment (7 of which were predominantly sand) from various locations were received for analysis of their content of organic pollutants. These analyses were performed using a capillary column gas chromatograph equipped with an electron impact (E.I.) mass spectrometer as detector and using computerised data storage. In addition to the target compounds, the full scan data were examined to determine the composition of natural organic products and a series of diagnostic fragment ions was used to search for additional anthropogenic products. Organic-rich environmental samples are notoriously difficult to analyse for pollutant organics owing to the presence of high concentrations of many natural organic compounds. A single procedure for extraction and clean-up was adopted. It was designed for chlorinated aliphatic and aromatic hydrocarbons and other pesticides containing acidic functional groups and was based on published methods for the determination of organic pollutants in soils and sediments. 4 soils and 2 sands showed levels of one or two groups of PCBs slightly in excess of the detection limit, one sample showed a similar level of 2,4-D and 3 samples contained dieldrin at or just above the detection limit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Irish and UK governments, along with other countries, have made a commitment to limit the concentrations of greenhouse gases in the atmosphere by reducing emissions from the burning of fossil fuels. This can be achieved (in part) through increasing the sequestration of CO2 from the atmosphere including monitoring the amount stored in vegetation and soils. A large proportion of soil carbon is held within peat due to the relatively high carbon density of peat and organic-rich soils. This is particularly important for a country such as Ireland, where some 16% of the land surface is covered by peat. For Northern Ireland, it has been estimated that the total amount of carbon stored in vegetation is 4.4Mt compared to 386Mt stored within peat and soils. As a result it has become increasingly important to measure and monitor changes in stores of carbon in soils. The conservation and restoration of peat covered areas, although ongoing for many years, has become increasingly important. This is summed up in current EU policy outlined by the European Commission (2012) which seeks to assess the relative contributions of the different inputs and outputs of organic carbon and organic matter to and from soil. Results are presented from the EU-funded Tellus Border Soil Carbon Project (2011 to 2013) which aimed to improve current estimates of carbon in soil and peat across Northern Ireland and the bordering counties of the Republic of Ireland.
Historical reports and previous surveys provide baseline data. To monitor change in peat depth and soil organic carbon, these historical data are integrated with more recently acquired airborne geophysical (radiometric) data and ground-based geochemical data generated by two surveys, the Tellus Project (2004-2007: covering Northern Ireland) and the EU-funded Tellus Border project (2011-2013) covering the six bordering counties of the Republic of Ireland, Donegal, Sligo, Leitrim, Cavan, Monaghan and Louth. The concept being applied is that saturated organic-rich soil and peat attenuate gamma-radiation from underlying soils and rocks. This research uses the degree of spatial correlation (coregionalization) between peat depth, soil organic carbon (SOC) and the attenuation of the radiometric signal to update a limited sampling regime of ground-based measurements with remotely acquired data. To comply with the compositional nature of the SOC data (perturbations of loss on ignition [LOI] data), a compositional data analysis approach is investigated. Contemporaneous ground-based measurements allow corroboration for the updated mapped outputs. This provides a methodology that can be used to improve estimates of soil carbon with minimal impact to sensitive habitats (like peat bogs), but with maximum output of data and knowledge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In waterlogged environments of the upper Amazon basin, organic matter is a major driver in the podzolisation of clay-depleted laterites, especially through its ability to weather clay minerals and chelate metals. Its structure in eight organic-rich samples collected at the margin and in the centre of the podzolic area of a soil sequence was investigated. The samples illustrate the main steps in the development of waterlogged podzols and belong either to eluviated topsoil A horizons or to illuviated subsoil Bhs, Bh and 2BCs horizons. Organic matter micromorphology was described, and the overall molecular structure of their clay size fractions was assessed using Fourier transform infrared (FTIR) spectroscopy and cross polarization/magic angle spinning (CP/MAS) C-13 nuclear magnetic resonance (NMR). Organic features of the horizons strongly vary both vertically and laterally in the sequence. Topsoil A horizons are dominated by organic residues juxtaposed to clean sands with a major aliphatic contribution. In the subsoil, numerous coatings, characteristic of illuviation processes, are observed in the following horizons: (i) At the margin and bottom parts of the podzolic area, dark brown organic compounds of low aromacity with abundant oxygen-containing groups accumulate in Bhs and 2BCs horizons. Their spectroscopic features agree with the observation of cracked coatings in 2BCs and the presence of organometallic complexes, whose abundance decreases towards low lying positions. (ii) By contrast, black organic compounds of high aromacity with few chelating functions accumulate as coatings and infills in the overlying sandy Bh horizon of well-expressed waterlogged podzols. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study evaluates the potential for using different effluents for simultaneous H-2 and CH4 production in a two-stage batch fermentation process with mixed microflora. An appreciable amount of H-2 was produced from parboiled rice wastewater (23.9 mL g(-1) chemical oxygen demand [COD]) and vinasse (20.8 mL g(-1) COD), while other effluents supported CH4 generation. The amount of CH4 produced was minimum for sewage (46.3 mL g(-1) COD), followed by parboiled rice wastewater (115.5 mL g(-1) COD) and glycerol (180.1 mL g(-1) COD). The maximum amount of CH4 was observed for vinasse (255.4 mL g(-1) COD). The total energy recovery from vinasse (10.4 kJ g(-1) COD) corresponded to the maximum COD reduction (74.7 %), followed by glycerol (70.38 %, 7.20 kJ g(-1) COD), parboiled rice wastewater (63.91 %, 4.92 kJ g(-1) COD), and sewage (51.11 %, 1.85 kJ g(-1) COD). The relatively high performance of vinasse in such comparisons could be attributed to the elevated concentrations of macronutrients contained in raw vinasse. The observations are based on kinetic parameters of H-2 and CH4 production and global energy recovery of the process. These observations collectively suggest that organic-rich effluents can be deployed for energy recovery with sequential generation of H-2 and CH4.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 +/- 2 K), and pressure (6 +/- 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6x10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate. Key Words: Martian surface-Organic chemistry-Photochemistry-Astrochemistry-Nontronite-Phyllosilicates. Astrobiology 15, 221-237.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The kind, sedimentation rate, and diagenesis of organic particles delivered to the North Atlantic seafloor during the Middle Jurassic-Early Cretaceous were responsible for the presence of carbonaceous sediments in Hole 534A. Organic-rich black clays formed from the rapid supply of organic matter; this organic matter was composed of either abundant, well-preserved, and poorly sorted particles of land plants deposited in clays and silty clays within terrigenous turbiditic sequences (tracheal facies) or abundant amorphous debris (xenomorphic facies) generated through the digestive tracts of marine zooplankton and sedimented as fecal pellets. Evidence for the fecal-pellet origin of xenomorphic debris is illustrated. Black clays were also produced in sediments containing less organic matter as a result of the black color of carbonized particles composing all or most of the residues (micrinitic facies). Slowly sedimented hematitic Aptian clays contain very little carbonized, organic debris that survived diagenetic oxidation. In the red calcareous clay sequence of the Late Jurassic, larger amounts of this oxidized debris turned several clay layers black or blackish red. Carbonized debris also dominates the residues recovered in interbedded black and green Albian clays. Carbonization of organic matter in these sediments either turned them black or provided the diagenetic environment for reduced iron. Carbonized debris is also appreciable in burrow-mottled black-green Kimmeridgian clay. The study of Hole 534A organic matter indicates that during the middle Callovian there was a rapid supply of terrigenous organic matter, followed by a late Callovian episode of rapidly supplied xenomorphic debris deposited as fecal pellets. The Late Jurassic-Berriasian was a time of slower sedimentation of organic matter, primarily of a marine dinoflagellate flora in a poorly preserved xenomorphic facies variously affected by diagenetic oxidation. Several intervals of carbonized tracheal tissue in the Oxfordian and Kimmeridgian suggest episodes of oxidized terrigenous matter. The same sequence of Callovian organic events is evident in much of the Early Cretaceous

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Cretaceous has long been recognized as a time when greenhouse conditions were fueled by elevated atmospheric CO2 and accompanied by perturbations of the global carbon cycle described as oceanic anoxic events (OAEs). Yet, the magnitude and frequency of temperature change during this interval of warm and equable climate are poorly constrained. Here we present a high-resolution record of sea-surface temperatures (SSTs) reconstructed using the TEX86 paleothermometer for a sequence of early Aptian organic-rich sediments deposited during the first Cretaceous OAE (OAE1a) at Shatsky Rise in the tropical Pacific. SSTs range from ~30 to ~36 °C and include two prominent cooling episodes of ~4 °C. The cooler temperatures reflect significant temperature instability in the tropics likely triggered by changes in carbon cycling induced by enhanced burial of organic matter. SST instability recorded during the early Aptian in the Pacific is comparable to that reported for the late Albian-early Cenomanian in the Atlantic, suggesting that such climate perturbations may have recurred during the Cretaceous with concomitant consequences for biota and the marine environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the results of downhole stable isotopic (d13Corg [organic carbon] and d15N) and elemental measurements (total organic carbon [TOC], total nitrogen [TN], and carbon/nitrogen [C/N]) of sedimentary organic matter (SOM) along with stable isotopic measurements (d18O and d13C) of left-coiling Neogloboquadrina pachyderma planktonic foraminifers from Ocean Drilling Program Site 1166. TOC and TN measurements indicate a large change from organic-rich preglacial sediments with primary organic matter to organic-poor early glacial and glacial sediments, with mainly recycled organic matter. Results of the stable isotopic measurements of SOM show a range of values that are typical of both marine and terrestrial organic matter, probably reflecting a mixture of the two. However, C/N values are mostly high (>15), suggesting greater input and/or preservation of terrestrial organic matter. Foraminifers are only present in glacial/glaciomarine sediments of latest Pliocene to Pleistocene age at Site 1166 (lithostratigraphic Unit I). The majority of this unit has d13Corg and TOC values that are similar to those of glacial sediments recovered at Site 1167 (lithostratigraphic Unit II) on the slope and may have the same source(s). Although the low resolution of the N. pachyderma (s.) d18O and d13C data set precludes any specific paleoclimatic interpretation, downcore variations in foraminifer d18O and d13C values of 0.5 per mil to 1 per mil amplitude may indicate glacial-interglacial changes in ice volume/temperature in the Prydz Bay region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The geochemical studies of Sites 534 and 391 and their comparison allow us to improve the chemical characterization of different geological formations dating from the early Callovian to the Maestrichtian along the continental margin of eastern North America. Three of the formations are favorable for the preservation of organic matter: (1) the unnamed formation (middle Callovian to Oxfordian), (2) the Blake-Bahama Formation (Berriasian to Barremian), and (3) the Hatteras Formation (Aptian to Cenomanian). The organic matter is mainly detrital, except for a few organic-rich layers where a contribution of aquatic material occurs. In these organic-rich layers, the petroleum potential is medium to good. Maturation has not quite reached the beginning of the oil window even for the deepest organic material.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The distribution of C1 to C8 hydrocarbons in sediment samples from DSDP Leg 75, Hole 530A, indicates that significant amounts of methane and ethane have migrated from organic-rich to organic-lean shales in close proximity. Most compounds larger than ethane are not migrating out of black shales, where they occur in high concentrations. These results lead to a general model for assessing migration. In addition, three shale types are identified on the basis of organic carbon and pyrolysis products and patterns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxidized intervals of five organic-rich Madeira Abyssal Plain (MAP) turbidites deposited during the Miocene, Pliocene, and Pleistocene all displayed comparable major loss of total organic carbon (TOC) (84 ± 3.1%) accompanied by a negative isotopic (d13C) shift ranging from -0.3 to -2.9 per mil. Major but significantly lower loss of total nitrogen (Ntot, 61 ± 7.1%) also occurred, leading to a decrease in TOC relative to Ntot (C/Ntot) and a +1.3 to 2.7 per mil Ntot isotopic (d15N) shift. Compound specific isotopic measurements on plant wax n-alkanes indicate the terrestrial organic component in the unoxidized deposits is 13C-enriched owing to significant C4 contribution. Selective preservation of terrestrial relative to marine organic carbon could account for the d13C behavior of TOC upon oxidation but only if a 13C-depleted component of the bulk terrestrial signal is selectively preserved in the process. Although the C/Ntot decrease and positive d15N shift seems inconsistent with selective terrestrial organic preservation, results from analysis of a Modern eolian dust sample collected in the vicinity indicate these observations are compatible. Regardless of the specific explanation for these isotopic observations, however, our findings provide evidence that paleoreconstruction of properties such as pCO2 using the d13C of TOC is a goal fraught with uncertainty whether or not the marine sedimentary record considered is 'contaminated' with significant terrestrial input. Nonetheless, despite major and selective loss of both marine and terrestrial components as a consequence of postdepositional oxidation, intensive organic geochemical proxies such as the alkenone unsaturation index, UK'37, appear resistant to change and thereby retain their paleoceanographic promise.