915 resultados para Organic reaction mechanisms
Resumo:
The reactions induced by the weakly bound (6)Li projectile interacting with the intermediate mass target (59)Co were investigated. Light charged particles singles and alpha-d coincidence measurements were performed at the near barrier energies E(lab) = 17.4, 21.5, 25.5 and 29.6 MeV. The main contributions of the different competing mechanisms are discussed. A statistical model analysis. Continuum-Discretized Coupled-Channels (CDCC) calculations and two-body kinematics were used as tools to provide information to disentangle the main components of these mechanisms. A significant contribution of the direct breakup was observed through the difference between the experimental sequential breakup cross section and the CDCC prediction for the non-capture breakup cross section. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The hydrolysis reaction mechanism of phosphite antioxidants is investigated by liquid chromatography-mass spectrometry (LC/MS). The phosphites were chosen because they differed in chemical structure and phosphorus content. Dopant assisted-atmospheric pressure photoionization (DA-APPI) is chosen as the ion source for (lie ionization of the compounds. [it our previous work, DA-APPI was shown to offer an attractive alternative to atmospheric pressure chemical ionization (APCI) since it provided background-ion free mass spectra and higher sensitivity [M. Papanastasiou, et al., Polymer Degradation and Stability 91 (11) (2006) 2675-2682]. In positive ion mode, the molecules are generally detected in their protonated form. In negative ion mode, the phosphites are unstable and only fragment ions are observed: these however, are characteristic of each phosphite and may be used for the identification of the analytes in complex mixtures. The analytes under investigation are exposed to accelerated humid ageing conditions and their hydrolytic pathway and stability is investigated. Different substituents around the phosphorus atom are shown to have a significant effect on the stability of the phosphites, with phenol substituents producing very hydrolytically stable structures. Alkanox P24 and PEP-36 follow a similar hydrolytic pathway via the scission of the first and then the second P-O-phenol bonds, eventually leading to the formation of phenol, Phosphorous acid and pentaerythritol as end products. HP-10 exhibits a rather different Structure and the products detected suggest scission of either the P-O-hydrocarbon or one of the P-O-phenol bonds. A phenomenon similar to that of autocatalysis is observed for all phosphites and is attributed to the formation of dialkyl phosphites as intermediate products. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This bibliography contains 417 annotated references on uses of isotopes in industry and in chemical reaction mechanisms and kinetics. The references were taken from the 1957-1958 open literature. Also included are a list of journals from which the references were selected, an author index, an isotope index, and a graphical depiction of typical applications.
Resumo:
Five samples including a composite refuse derived fuel (RDF) and four combustible components of municipal solid wastes (MSW) have been reacted under supercritical water conditions in a batch reactor. The reactions have been carried out at 450 °C for 60 min reaction time, with or without 20 wt% RuO2/gamma-alumina catalyst. The reactivities of the samples depended on their compositions; with the plastic-rich samples, RDF and mixed waste plastics (MWP), giving similar product yields and compositions, while the biogenic samples including mixed waste wood (MWW) and textile waste (TXT) also gave similar reaction products. The use of the heterogeneous ruthenium-based catalyst gave carbon gasification efficiencies (CGE) of up to 99 wt%, which was up by at least 83% compared to the non-catalytic tests. In the presence of RuO2 catalyst, methane, hydrogen and carbon dioxide became the dominant gas products for all five samples. The higher heating values (HHV) of the gas products increased at least two-fold in the presence of the catalyst compared to non-catalytic tests. Results show that the ruthenium-based catalyst was active in feedstock steam reforming, methanation and possible direct hydrogenolysis of C-C bonds. This work provides new insights into the catalytic mechanisms of RuO2 during SCWG of carbonaceous materials, along with the possibility of producing high yields of methane from MSW fractions.
Resumo:
Atomic layer deposition (ALD) has been recognized as a promising method to deposit conformal and uniform thin film of copper for future electronic devices. However, many aspects of the reaction mechanism and the surface chemistry of copper ALD remain unclear. In this paper, we employ plane wave density functional theory (DFT) to study the transmetalation ALD reaction of copper dimethylamino-2-propoxide [Cu(dmap)2] and diethylzinc [Et2Zn] that was realized experimentally by Lee et al. [ Angew. Chem., Int. Ed. 2009, 48, 4536−4539]. We find that the Cu(dmap)2 molecule adsorbs and dissociates through the scission of one or two Cu–O bonds into surface-bound dmap and Cu(dmap) fragments during the copper pulse. As Et2Zn adsorbs on the surface covered with Cu(dmap) and dmap fragments, butane formation and desorption was found to be facilitated by the surrounding ligands, which leads to one reaction mechanism, while the migration of ethyl groups to the surface leads to another reaction mechanism. During both reaction mechanisms, ligand diffusion and reordering are generally endothermic processes, which may result in residual ligands blocking the surface sites at the end of the Et2Zn pulse, and in residual Zn being reduced and incorporated as an impurity. We also find that the nearby ligands play a cooperative role in lowering the activation energy for formation and desorption of byproducts, which explains the advantage of using organometallic precursors and reducing agents in Cu ALD. The ALD growth rate estimated for the mechanism is consistent with the experimental value of 0.2 Å/cycle. The proposed reaction mechanisms provide insight into ALD processes for copper and other transition metals.
Resumo:
A detailed series of simulation chamber experiments has been performed on the atmospheric degradation pathways of the primary air pollutant naphthalene and two of its photooxidation products, phthaldialdehyde and 1-nitronaphthalene. The measured yields of secondary organic aerosol (SOA) arising from the photooxidation of naphthalene varied from 6-20%, depending on the concentrations of naphthalene and nitrogen oxides as well as relative humidity. A range of carbonyls, nitro-compounds, phenols and carboxylic acids were identified among the gas- and particle-phase products. On-line analysis of the chemical composition of naphthalene SOA was performed using aerosol time-of-flight mass spectrometry (ATOFMS) for the first time. The results indicate that enhanced formation of carboxylic acids may contribute to the observed increase in SOA yields at higher relative humidity. The photolysis of phthaldialdehyde and 1-nitronaphthalene was investigated using natural light at the European Photoreactor (EUPHORE) in Valencia, Spain. The photolysis rate coefficients were measured directly and used to confirm that photolysis is the major atmospheric loss process for these compounds. For phthaldialdehyde, the main gas-phase products were phthalide and phthalic anhydride. SOA yields in the range 2-11% were observed, with phthalic acid and dihydroxyphthalic acid identified among the particle phase products. The photolysis of 1-nitronaphthalene yielded nitric oxide and a naphthoxy radical which reacted to form several products. SOA yields in the range 57-71% were observed, with 1,4-naphthoquinone, 1-naphthol and 1,4-naphthalenediol identified in the particle phase. On-line analysis of the SOA generated in an indoor chamber using ATOFMS provided evidence for the formation of high-molecular-weight products. Further investigations revealed that these products are oxygenated polycyclic compounds most likely produced from the dimerization of naphthoxy radicals. These results of this work indicate that naphthalene is a potentially large source of SOA in urban areas and should be included in atmospheric models. The kinetic and mechanistic information could be combined with existing literature data to produce an overall degradation mechanism for naphthalene suitable for inclusion in photochemical models that are used to predict the effect of emissions on air quality.
Resumo:
Detailed mechanisms for the formation of hydroxyl or alkoxyl radicals in the reactions between tetrachloro-p-benzoquinone (TCBQ) and organic hydroperoxides are crucial for better understanding the potential carcinogenicity of polyhalogenated quinones. Herein, the mechanism of the reaction between TCBQ and H2O2 has been systematically investigated at the B3LYP/6-311++G** level of theory in the presence of different numbers of water molecules. We report that the whole reaction can easily take place with the assistance of explicit water molecules. Namely, an initial intermediate is formed first. After that, a nucleophilic attack of H2O2 onto TCBQ occurs, which results in the formation of a second intermediate that contains an OOH group. Subsequently, this second intermediate decomposes homolytically through cleavage of the O-O bond to produce a hydroxyl radical. Energy analyses suggest that the nucleophilic attack is the rate-determining step in the whole reaction. The participation of explicit water molecules promotes the reaction significantly, which can be used to explain the experimental phenomena. In addition, the effects of F, Br, and CH3 substituents on this reaction have also been studied.
Resumo:
This study reports a hybrid of two metal-organic semiconductors that are based on organic charge transfer complexes of 7,7,8,8-tetracyanoquinodimethane (TCNQ). It is shown that the spontaneous reaction between semiconducting microrods of CuTCNQ with Ag+ ions leads to the formation of a CuTCNQ/AgTCNQ hybrid, both in aqueous solution and acetonitrile, albeit with completely different reaction mechanisms. In an aqueous environment, the reaction proceeds by a complex galvanic replacement (GR) mechanism, wherein in addition to AgTCNQ nanowires, Ag0 nanoparticles and Cu(OH)2 crystals decorate the surface of CuTCNQ microrods. Conversely, in acetonitrile, a GR mechanism is found to be thermodynamically unfavorable and instead a corrosion-recrystallization mechanism leads to the decoration of CuTCNQ microrods with AgTCNQ nanoplates, resulting in a pure CuTCNQ/AgTCNQ hybrid metal-organic charge transfer complex. While hybrids of two different inorganic semiconductors are regularly reported, this report pioneers the formation of a hybrid involving two metal-organic semiconductors that will expand the scope of TCNQ-based charge transfer complexes for improved catalysis, sensing, electronics and biological applications.
Resumo:
Recent advances in direct-use plasmonic-metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible-light irradiation have attracted great interest. Plasmonic-metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic-metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light-excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic-metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation.
Resumo:
Metal nanoparticle photocatalysts have attracted recent interest due to their strong absorption of visible and ultraviolet light. The energy absorbed by the metal conduction electrons and the intense electric fields in close proximity, created by the localized surface plasmon resonance effect, makes the crucial contribution of activating the molecules on the metal nanoparticles which facilitates chemical transformation. There are now many examples of successful reactions catalyzed by supported nanoparticles of pure metals and of metal alloys driven by light at ambient or moderate temperatures. These examples demonstrate these materials are a novel group of efficient photocatalysts for converting solar energy to chemical energy and that the mechanisms are distinct from those of semiconductor photocatalysts. We present here an overview of recent research on direct photocatalysis of supported metal nanoparticles for organic synthesis under light irradiation and discuss the significant reaction mechanisms that occur through light irradiation.
Resumo:
The work described in this dissertation includes fundamental investigations into three surface processes, namely inorganic film growth, water-induced oxidation, and organic functionalization/passivation, on the GaP and GaAs(001) surfaces. The techniques used to carry out this work include scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. Atomic structure, electronic structure, reaction mechanisms, and energetics related to these surface processes are discussed at atomic or molecular levels.
First, we investigate epitaxial Zn3P2 films grown on the Ga-rich GaAs(001)(6×6) surface. The film growth mechanism, electronic properties, and atomic structure of the Zn3P2/GaAs(001) system are discussed based on experimental and theoretical observations. We discover that a P-rich amorphous layer covers the crystalline Zn3P2 film during and after growth. We also propose more accurate picture of the GaP interfacial layer between Zn3P2 and GaAs, based on the atomic structure, chemical bonding, band diagram, and P-replacement energetics, than was previously anticipated.
Second, DFT calculations are carried out in order to understand water-induced oxidation mechanisms on the Ga-rich GaP(001)(2×4) surface. Structural and energetic information of every step in the gaseous water-induced GaP oxidation reactions are elucidated at the atomic level in great detail. We explore all reasonable ground states involved in most of the possible adsorption and decomposition pathways. We also investigate structures and energies of the transition states in the first hydrogen dissociation of a water molecule on the (2×4) surface.
Finally, adsorption structures and thermal decomposition reactions of 1-propanethiol on the Ga-rich GaP(001)(2×4) surface are investigated using high resolution STM, XPS, and DFT simulations. We elucidate adsorption locations and their associated atomic structures of a single 1-propanethiol molecule on the (2×4) surface as a function of annealing temperature. DFT calculations are carried out to optimize ground state structures and search transition states. XPS is used to investigate variations of the chemical bonding nature and coverage of the adsorbate species.
Resumo:
The kinetics of hydrolysis of 1,8-N-butyl-naphthalimide (1,8-NBN) to 1,8-N-butyl-naphthalamide (1,8-NBAmide) and of 2,3-N-butyl-naphthalimide (2,3-NBN) to 2,3-N-butyl-naphthalamide (2,3-NBAmide), as well as the formation of the respective anhydrides from the amides were investigated in a wide acidity range. 1,8-NBN equilibrates with 1,8-NBAmide in mild alkali. Under the same conditions 2,3-NBN quantitatively yields 2,3-NBAmide. Over a wide range of acidities the reactions of the 1,8- and 2,3-N-butyl-naphthalamides (or imides) yield similar products but with widely different rates and at distinct pH`s. Anhydride formation in acid was demonstrated for 1,8-NBAmide. The reactions mechanisms were rationalized in the manifold pathways of ab initio calculations. The differences in rates and pH ranges in the reactions of the 1,8- and 2,3-N-butyl-naphthalamides were attributed to differences in the stability of the tetrahedral intermediates in alkali as well as the relative stabilities of the five and six-membered ring intermediates. The rate of carboxylic acid assisted 1,8-N-Butyl-naphthalamide hydrolysis is one of the largest described for amide hydrolysis models. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Although electrochemical oxidation of simple organic molecules on metal catalysts is the basic ingredient of fuel cells, which have great technological potential as a renewable source of electrical energy, the detailed reaction mechanisms are in most cases not completely understood. Here, we investigate the ethanol-platinum interface in acidic aqueous solution using infrared-visible sum frequency generation (SFG) spectroscopy and theoretical calculations of vibrational spectra in order to identify the intermediates present during the electro-oxidation of ethanol. The complex vibrational spectrum in the fingerprint region imply on the coexistence of several adsorbates. Based on spectra in ultra-high-vacuum (UHV) and electrochemical environment from the literature and our density functional theory (DFT) calculations of vibrational spectra, new adsorbed intermediates, never before observed with conventional infrared (IR) spectroscopy, are proposed here: g2-acetaldehyde, g2-acetyl, ethylidyne, monodentate acetate, methoxy, tertiary methanol derivative, COH residue, g2-formaldehyde, mono and bidentate formate, CH3 and CH2 residues. In addition, we present new evidences for an ethoxy intermediate, a secondary ethanol derivative and an acetyl species, and we confirm the presence of previously observed adsorbates: a tertiary ethanol derivative, bidentate acetate, and COad. These results indicate that the platinum surface is much more reactive, and the reaction mechanism for ethanol electro-oxidation is considerably more complex than previously considered. This might be also true for many other molecule-catalyst systems.
Resumo:
The objective of this research was to investigate the oxidation of organic compounds in molten alkali metal hydroxides containing manganates. It has been shown that controlled oxidation can be readily achieved with high specificity to give products in high yield with very short reaction times. The concurrent changes in the melt were monitored using a vibrating platinum indicator electrode with a quazi-reference electrode which was successfully developed for use in molten (Na-K)OH eutectic at 523K. Henry's Law constants for water in the molten eutectic system (Na-K)OH have been measured and used to calculate the water concentration in the melt. The electrochemistry of manganates in molten (Na-K)OH eutectic at 523K has been studied using the vibrating platinum electrode, and the existence of the species Mn(II), Mn(II!), Mn(IV), Mn(V) and Mn(VI) in such melts has been investigated at various water concentrations. The half-wave potentials of the voltammetric waves were measured versus the cathodic limit of the melt. The stability of Mn(V) or Mn(VI) in the melt was achieved by varying the water concentration. A range of organic chemicals has been passed through molten (Na-K)OH at 523K and the reactions of these chemicals with the melt have been studied. The same organics were then passed through molten (Na-K)OH containing stabilized Mn(V) or Mn{VI) without violent reaction. Methanol, allyl alcohol, propane 1, 2 diol, I-heptene and acetone were oxidized by Mn(V) and Mn(VI). Ethanol was only oxidized by Mn(VI), isopropanol and benzyl alcohol were only oxidized by Mn(V). Npropanol, butanol, 2 methyl propan-2-ol, n-hexane, n-heptane toluene and cyclohexane were unchanged by both Mn(V) and Mn(VI). Detailed experiments have been performed on the reactions of ethanol, iso-propanol and methanol in molten (Na-K)OH containing stabilized Mrt(V) or Mn(VI), and reaction mechanisms have been postulated. Ethanol and iso-propanol were oxidized to acetaldehyde and acetone respectively with a potential for useful chemical process. The oxidation of methanol could be developed as a basis for an industrial methanol disposal process.