981 resultados para Order of Railway Conductors and Brakemen
Resumo:
Blank forms in Chinese and English.
Resumo:
Includes bibliographical references.
Resumo:
"The Harmony of Le Clerc, which was the basis of Newcome's work, was published at Amsterdam in 1699, medium folio. That of Newcome was printed in Dublin in 1778, large folio."--Pref.
Resumo:
Includes bibliographical references.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
We applied small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) to monitor evolution of the CO2 adsorption in porous silica as a function of CO2 pressure and temperature in pores of different sizes. The range of pressures (0 < P < 345 bar) and temperatures (T=18 OC, 35 OC and 60 OC) corresponded to subcritical, near critical and supercritical conditions of bulk fluid. We observed that the adsorption behavior of CO2 is fundamentally different in large and small pores with the sizes D > 100 Å and D < 30 Å, respectively. Scattering data from large pores indicate formation of a dense adsorbed film of CO2 on pore walls with the liquid-like density (ρCO2)ads≈0.8 g/cm3. The adsorbed film coexists with unadsorbed fluid in the inner pore volume. The density of unadsorbed fluid in large pores is temperature and pressure dependent: it is initially lower than (ρCO2)ads and gradually approaches it with pressure. In small pores compressed CO2 gas completely fills the pore volume. At the lowest pressures of the order of 10 bar and T=18 OC, the fluid density in smallest pores available in the matrix with D ~ 10 Å exceeds bulk fluid density by a factor of ~ 8. As pressure increases, progressively larger pores become filled with the condensed CO2. Fluid densification is only observed in pores with sizes less than ~ 25 – 30 Å. As the density of the invading fluid reaches (ρCO2)bulk~ 0.8 g/cm3, pores of all sizes become uniformly filled with CO2 and the confinement effects disappear. At higher densities the fluid in small pores appears to follow the equation of state of bulk CO2 although there is an indication that the fluid density in the inner volume of large pores may exceed the density of the adsorbed layer. The equivalent internal pressure (Pint) in the smallest pores exceeds the external pressure (Pext) by a factor of ~ 5 for both sub- and supercritical CO2. Pint gradually approaches Pext as D → 25 – 30 Å and is independent of temperature in the studied range of 18 OC ≤ T ≤ 60 OC. The obtained results demonstrate certain similarity as well as differences between adsorption of subcritical and supercritical CO2 in disordered porous silica. High pressure small angle scattering experiments open new opportunities for in situ studies of the fluid adsorption in porous media of interest to CO2 sequestration, energy storage, and heterogeneous catalysis.
Resumo:
The overall aim of our research was to characterize airborne particles from selected nanotechnology processes and to utilize the data to develop and test quantitative particle concentration-based criteria that can be used to trigger an assessment of particle emission controls. We investigated particle number concentration (PNC), particle mass (PM) concentration, count median diameter (CMD), alveolar deposited surface area, elemental composition, and morphology from sampling of aerosols arising from six nanotechnology processes. These included fibrous and non-fibrous particles, including carbon nanotubes (CNTs). We adopted standard occupational hygiene principles in relation to controlling peak emission and exposures, as outlined by both Safe Work Australia, (1) and the American Conference of Governmental Industrial Hygienists (ACGIH®). (2) The results from the study were used to analyses peak and 30-minute averaged particle number and mass concentration values measured during the operation of the nanotechnology processes. Analysis of peak (highest value recorded) and 30-minute averaged particle number and mass concentration values revealed: Peak PNC20–1000 nm emitted from the nanotechnology processes were up to three orders of magnitude greater than the local background particle concentration (LBPC). Peak PNC300–3000 nm was up to an order of magnitude greater, and PM2.5 concentrations up to four orders of magnitude greater. For three of these nanotechnology processes, the 30-minute average particle number and mass concentrations were also significantly different from the LBPC (p-value < 0.001). We propose emission or exposure controls may need to be implemented or modified, or further assessment of the controls be undertaken, if concentrations exceed three times the LBPC, which is also used as the local particle reference value, for more than a total of 30 minutes during a workday, and/or if a single short-term measurement exceeds five times the local particle reference value. The use of these quantitative criteria, which we are terming the universal excursion guidance criteria, will account for the typical variation in LBPC and inaccuracy of instruments, while precautionary enough to highlight peaks in particle concentration likely to be associated with particle emission from the nanotechnology process. Recommendations on when to utilize local excursion guidance criteria are also provided.
Resumo:
This dissertation studies the language of Latin letters that were written in Egypt and Vindolanda (in northern Britain) during the period 1st century BC 3rd century AD on papyri, ostraca, and wooden tablets. The majority of the texts is, in one way or another, connected with the Roman army. The focus of the study is on syntax and pragmatics. Besides traditional philological methods, modern syntactic theory is used as well, especially in the pragmatic analysis. The study begins with a critical survey of certain concepts that are current in the research on the Latin language, most importantly the concept of vulgar Latin , which, it is argued, seems to be used as an abstract noun for variation and change in Latin . Further, it is necessary to treat even the non-literary material primarily as written texts and not as straightforward reflections of spoken language. An examination of letter phraseology shows that there is considerable variation between the two major geographical areas of provenance. Latin letter writing in Egypt was influenced by Greek. The study highlights the importance of seeing the letters as a text type, with recurring phraseological elements appearing in the body text as well. It is argued that recognising these elements is essential for the correct analysis of the syntax. Three areas of syntax are discussed in detail: sentence connection (mainly parataxis), syntactically incoherent structures and word order (the order of the object and the verb). For certain types of sentence connection we may plausibly posit an origin in spoken Latin, but for many other linguistic phenomena attested in this material the issue of spoken Latin is anything but simple. Concerning the study of historical syntax, the letters offer information about the changing status of the accusative case. Incoherent structures may reflect contaminations in spoken language but usually the reason for them is the inability of the writer to put his thoughts into writing, especially when there is something more complicated to be expressed. Many incoherent expressions reflect the need to start the predication with a thematic constituent. Latin word order is seen as resulting from an interaction of syntactic and pragmatic factors. The preference for an order where the topic is placed sentence-initially can be seen in word order more generally as well. Furthermore, there appears a difference between Egypt and Vindolanda. The letters from Vindolanda show the order O(bject) V(erb) clearly more often than the letters from Egypt. Interestingly, this difference correlates with another, namely the use of the anaphoric pronoun is. This is an interesting observation in view of the fact that both of these are traditional Latin features, as opposed to those that foreshadow the Romance development (VO order and use of the anaphoric ille). However, it is difficult to say whether this is an indication of social or regional variation.
Resumo:
Three kinds of high-performance polyimides 1 (poly(ketone-imide) PKI), 2 (poly(ether-imide) PEI) and 3 (poly(oxy-imide) POI) were studied using nuclear magnetic resonance (NMR). The NMR spectra of the polyimides were assigned according to the comprehensive consideration of the substitution effect of different substituting groups, viz. distortionless enhancement by polarization transfer (DEPT), no nuclear Overhauser effect (NNE), analysis of relaxation time, and two-dimensional correlated spectroscopy (COSY) techniques. The structural units of these three polyimides were determined. Carbon-13 and proton relaxation times for PEI and PKI were interpreted in terms of segmental motion characterized by the sharp cutoff model of Jones and Stockmayer (JS model) and anisotropic group rotation such as phenyl group rotation and methyl group rotation. Correlation times for the main-chain motion are in the tens of picosecond range which indicates the high flexibility of polyimide chains. Correlation times for phenyl group and methyl group rotations are more than 1 order of magnitude lower and approximately 1 order of magnitude higher than that of the main chain, respectively.
Resumo:
The hydroperoxy radical (HO2) plays a critical role in Earth's atmospheric chemistry as a component of many important reactions. The self-reaction of hydroperoxy radicals in the gas phase is strongly affected by the presence of water vapor. In this work, we explore the potential energy surfaces of hydroperoxy radicals hydrogen bonded to one or two water molecules, and predict atmospheric concentrations and vibrational spectra of these complexes. We predict that when the HO2 concentration is on the order of 108molecules·cm-3 at 298 K, that the number of HO2···H2O complexes is on the order of 107molecules·cm-3 and the number of HO2···(H2O)2 complexes is on the order of 106molecules·cm-3. Using the computed abundance of HO2···H2O, we predict that, at 298 K, the bimolecular rate constant for HO2···H2O + HO2 is about 10 times that for HO2 + HO2.
Resumo:
Signed: Harry H. Schwartz, chairman, Floyd McGown, A. Langley Coffey.
Resumo:
Cover title.
Resumo:
Signed: John W. Yeager, chairman, John T. McCann, Thomas J. Reynolds.