991 resultados para Optical sensor
Resumo:
In this paper, the sensor of an optical mouse is presented as a counterfeit coin detector applied to the two-Euro case. The detection process is based on the short distance image acquisition capabilities of the optical mouse sensor where partial images of the coin under analysis are compared with some partial reference coin images for matching. Results show that, using only the vision sense, the counterfeit acceptance and rejection rates are very similar to those of a trained user and better than those of an untrained user.
Resumo:
An optical chemical sensor for the determination of nitrite based on incorporating methyltrioctylammonium chloride as an anionic exchanger on the triacetylcellulose polymer has been reported. The response of the sensor is based on the redox reaction between nitrite in aqueous solution and iodide adsorbed on sensing membrane using anion exchange phenomena. The sensing membrane reversibly responses to nitrite ion over the range of 6.52×10-6 - 8.70×10-5 mol L-1 with a detection limit of 6.05×10-7 mol L-1 (0.03 µg mL-1) and response time of 6 min. The relative standard deviation for eight replicate measurements of 8.70×10-6 and 4.34×10-5 mol L-1 of nitrite was 4.4 and 2.5 %, respectively. The sensor was successfully applied for determination of nitrite in food, saliva and water samples.
Resumo:
In this work we proposed a relative humidity (RH) sensor based on a Bragg grating written in an optical fiber, associated with a coating of organo-silica hybrid material prepared by the sol-gel method. The organo-silica-based coating has a strong adhesion to the optical fiber and its expansion is reversibly affected by the change in the RH values (15.0-95.0%) of the surrounding environment, allowing an increased sensitivity (22.2 pm/%RH) and durability due to the presence of a siliceous-based inorganic component. The developed sensor was tested in a real structure health monitoring essay, in which the RH inside two concrete blocks with different porosity values was measured over 1 year. The results demonstrated the potential of the proposed optical sensor in the monitoring of civil engineering structures.
Resumo:
Estimation of pasture productivity is an important step for the farmer in terms of planning animal stocking, organizing animal lots, and determining supplementary feeding needs throughout the year. The main objective of this work was to evaluate technologies which have potential for monitoring aspects related to spatial and temporal variability of pasture green and dry matter yield (respectively, GM and DM, in kg/ha) and support to decision making for the farmer. Two types of sensors were evaluated: an active optical sensor(OptRx®, which measures the NDVI, Normalized Difference Vegetation Index) and a capacitance probe (GrassMaster II which estimates plant mass). The results showed the potential of NDVI for monitoring the evolution of spatial and temporal patterns of vegetative growth of biodiverse pasture. Higher NDVI values were registered as pasture approached its greatest vegetative vigor, with a significant fall in the measured NDVI at the end of Spring, when the pasture began to dry due to the combination of higher temperatures and lower soil moisture content. This index was also effective for identifying different plant species (grasses/legumes) and variability in pasture yield. Furthermore, it was possible to develop calibration equations between the capacitance and the NDVI (R2 = 0.757; p < 0.01), between capacitance and GM (R2 = 0.799; p<0.01), between capacitance and DM (R2 = 0.630; p<0.01), between NDVI and GM (R2=0.745; p < 0.01), and between capacitance and DM (R2=0.524; p<0.01). Finally, a direct relationship was obtained between NDVI and pasture moisture content (PMC, in %) and between capacitance and PMC (respectively, R2 = 0.615; p<0.01 and R2=0.561; p <0.01) in Alentejo dryland farming systems.
Resumo:
The use of chromic materials for responsive surface-enhanced resonance Raman scattering (SERRS) based nanosensors is reported. The potential of nano-chromic SERRS is demonstrated with the use of the halochrome methyl yellow to fabricate an ultrasensitive pH optical sensor. Some of the challenges of the incorporation of chromic materials with metal nanostructures are addressed through the use of computational calculations and a comparison to measured SERRS and surface-enhanced Raman scattering (SERS) spectra is presented. A strong correlation between the measured SERRS and the medium's proton concentration is demonstrated for the pH range 2-6. The high sensitivity achieved by the use of resonance Raman conditions is shown through responsive SERRS measurements from only femtolitres of volume and with the concentration of the reporting molecules approaching the single molecule regime.
Resumo:
We discuss the operation of a new type of optical sensor (MISCam) based on a metal-insulator-semiconductor (MIS) structure. The operation principle relies on light-induced changes of the band bending and barrier height at the interface between semiconductor and insulator. An image is obtained from the quenching of the ac signal in analogy to the principle of the laser-scanned photodiode (LSP). Lateral resolution depends on the semiconductor material chosen. We have characterised the MIS structures by C-V, I-V, and spectral response measurements testing different types of insulators like a-Si3N4, SiO2, and AlN. The presence of slow interface charges allows for image memory. Colour sensors can be realised by controlling sign and magnitude of the electric fields in the base and the interface region.
Resumo:
O presente trabalho pretendeu desenvolver e testar um sensor óptico para detectar ciclamato de sódio, um adoçante artificial utilizado nas bebidas em geral. A primeira abordagem neste sentido baseou-se na preparação de um sensor óptico através da formação de complexos corados entre o ciclamato e várias espécies metálicas, nomeadamente Hg(II), Ba(II), Fe(II), Ag(II), Pb(II), Cd(II), Mn (II), Ni(II), Cu(II), Co(II), Sn(II) e Mg(II). Perante a ausência de resultados satisfatórios optou-se por explorar a acção do ciclamato de sódio na transferência/partilha de um corante entre duas fases líquidas imiscíveis. As fases líquidas utilizadas foram a água e o clorofórmio. Testaram-se várias famílias de corantes mas só uma classe se mostrou com as características apropriadas para o objectivo pretendido. Dentro dessa família de corantes, seleccionou-se aquele que, à partida, garantiu o melhor desempenho. O sensor foi testado em diferentes condições de pH e também na presença de potenciais interferentes de forma a estabelecer as melhores condições de utilização. O método mostrou-se bastante simples de executar, rápido na obtenção de resultados e com boas características para ser avaliado visualmente, mas sempre de acordo com os critérios de objectividade que um trabalho deste tipo requer. Além o disso permitiu ser calibrado de uma forma rápida e simples, características essenciais para a aplicação deste método na despistagem de ciclamato em análises de rotina. O método desenvolvido foi ainda aplicado à análise de vinho dopado com diferentes concentrações de ciclamato de sódio. Destes testes verificou-se a necessidade de optimização do método através da introdução de outras substâncias na fase não aquosa diminuindo a vulnerabilidade do sensor a outros interferentes. Como conclusão, o método correspondeu às expectativas, mostrando-se viável para aplicação à análise de vinhos, ainda com uma margem significativa de desenvolvimento no sentido de o tornar mais fiável e preciso.
Resumo:
Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.
Resumo:
Abstract:The objective of this work was to evaluate whether a canopy sensor is capable of estimating sugarcane response to N, as well as to propose strategies for handling the data generated by this device during the decision-making process for crop N fertilization. Four N rate-response experiments were carried out, with N rates varying from 0 to 240 kg ha-1. Two evaluations with the canopy sensor were performed when the plants reached average stalk height of 0.3 and 0.5 m. Only two experiments showed stalk yield response to N rates. The canopy sensor was able to identify the crop response to different N rates and the relationship of the nutrient with sugarcane yield. The response index values obtained from the canopy sensor readings were useful in assessing sugarcane response to the applied N rate. Canopy reflectance sensors can help to identify areas responsive to N fertilization and, therefore, improve sugarcane fertilizer management.
Resumo:
In this thesis, bacteriorhodopsin (BR) photosensor’s optical and electrical properties were studied. The BR sensor consisted of a dry film with BR in polyvinyl alcohol and covered with transparent conductors. In the experiments the BR photocycle was started with two lasers. The characteristics of the BR sensor were measured in two ways. The first approach was theoretical and it required knowing the laser parameters. The second way required assembling a measurement setup for the optical response measurements. However, no measurable results were obtained due to low laser power. The photoelectric response was measured in the experiments with two laser systems and the amplifier was tested. In the experiment with a Cavitar laser, the photoelectric response was obtained. In the experiment with FemtoFiber Pro laser, the photoelectric response was not measured. The expected amplitude of the response was obtained. The experimental data was analyzed and possible solutions for reducing the interference were given.
Resumo:
A new automatic feedback potometer for physiological studies of water uptake by root systems is described. A dual-optical-fibre amplitude-modulating displacement transducer of improved sensitivity is employed to detect the changes in liquid level. The merits of optimal double-cut fibres, which make full use of the critical angle and improve coupling between the emitter and the receiver, have resulted in a sensor that is 64 times more responsive than the simple emitter - detector probe. Positioning the optical fibre transducer in a narrow capillary and using feedback to control the liquid level allows continuous measurement of volumes in the nanolitre range. The optical sensor used does not need re-calibration for the different salt solutions used in such studies.
Resumo:
The cheese industry has continually sought a robust method to monitor milk coagulation. Measurement of whey separation is also critical to control cheese moisture content, which affects quality. The objective of this study was to demonstrate that an online optical sensor detecting light backscatter in a vat could be applied to monitor both coagulation and syneresis during cheesemaking. A prototype sensor having a large field of view (LFV) relative to curd particle size was constructed. Temperature, cutting time, and calcium chloride addition were varied to evaluate the response of the sensor over a wide range of coagulation and syneresis rates. The LFV sensor response was related to casein micelle aggregation and curd firming during coagulation and to changes in curd moisture and whey fat contents during syneresis. The LFV sensor has potential as an online, continuous sensor technology for monitoring both coagulation and syneresis during cheesemaking.
Resumo:
The use of conjugated polymers in the gas and volatile organic compounds (VOCs) detections represents an advance in the development of the electronic noses. Polythiophenes show good thermal and environmental stability, are easily synthesized and they have been studied as gas and VOCs sensors using different principles or transduction techniques. Among these techniques, optical sensing has been attracted attention, mainly due to its versatility. However, conjugated polymer-based optical sensors are still less studied. This paper describes the use of two poly(3-alkylthiophenes) for VOCs optical detection. The sensing measurements were carried out using visible spectroscopy. Both polymers showed good sensitivity to the VOCs, showing fast and reversible responses with some hysteresis, and were unable to detect hydroxylated samples. Furthermore, it was demonstrated that the thickness of polymer films influences the intensity of the optical response. Although there is similarity in the superficial composition of the polymers films, demonstrated by their surface energies, they showed significant differences in their optical properties upon exposure to the VOCs. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
A reliable and fast sensor for in vitro evaluation of solar protection factors (SPFs) of cosmetic products, based on the photobleaching kinetics of a nanocrystalline TiO(2)/dye UV-dosimeter, has been devised. The accuracy, robustness and suitability of the new device was demonstrated by the excellent matching of the predicted and the in vivo results up to SPF 70, for four standard samples analyzed in blind. These results strongly suggest that our device can be useful for routine SPF evaluation in laboratories devoted to the development or production of cosmetic formulations, since the conventional in vitro methods tend to exhibit unacceptably high errors above SPF similar to 30 and the conventional in vivo methods tend to be expensive and exceedingly time consuming. (C) 2011 Elsevier B.V. All rights reserved.