993 resultados para Optical nonlinear composites
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing. © 2005 IEEE.
Resumo:
Recent developments in nonlinear optics have brought to the fore of intensive research an interesting class of pulses with a parabolic intensity profile and a linear instantaneous frequency shift or chirp. Parabolic pulses propagate in optical fibres with normal group-velocity dispersion in a self-similar manner, holding certain relations (scaling) between pulse power, duration and chirp parameter, and can tolerate strong nonlinearity without distortion or wave breaking. These solutions, which have been dubbed similaritons, were demonstrated theoretically and experimentally in fiber amplifiers in 2000. Similaritons in fiber amplifiers are, along with solitons in passive fibres, the most well-known classes of nonlinear attractors for pulse propagation in optical fibre, so they take on major fundamental importance. The unique properties of parabolic similaritons have stimulated numerous applications in nonlinear optics, ranging from ultrashort high-power pulse generation to highly coherent continuum sources and to optical nonlinear processing of telecommunication signals.
Resumo:
Recent developments in nonlinear optics have brought to the fore of intensive research an interesting class of pulses with a parabolic intensity profile and a linear instantaneous frequency shift or chirp. Parabolic pulses propagate in optical fibres with normal group-velocity dispersion in a self-similar manner, holding certain relations (scaling) between pulse power, duration and chirp parameter, and can tolerate strong nonlinearity without distortion or wave breaking. These solutions, which have been dubbed similaritons, were demonstrated theoretically and experimentally in fibre amplifiers in 2000. Similaritons in fibre amplifiers are, along with solitons in passive fibres, the most well-known classes of nonlinear attractors for pulse propagation in optical fibre, so they take on major fundamental importance. The unique properties of parabolic similaritons have stimulated numerous applications in nonlinear optics, ranging from ultrashort high-power pulse generation to highly coherent continuum sources and to optical nonlinear processing of telecommunication signals. In this work, we review the physics underlying the generation of parabolic similaritons as well as recent results obtained in a wide range of experimental configurations.
Resumo:
A series of new ruthenium(II) complexes of the general formula [Ru(eta(5)-C5H5)(PP)(L)][PF6] (PP = DPPE or 2PPh(3), L = 4-butoxybenzonitrile or N-(3-cyanophenyl)formamide) and the binuclear iron(II) complex [Fe(eta(5)-C5H5)(PP)(mu-L)(PP)(eta(5)-C5H5)Fe][PF6](2) (L = (E)-2-(3-(4-nitrophenyl)allylidene)malononitrile, that has been also newly synthesized) have been prepared and studied to evaluate their potential in the second harmonic generation property. All the new compounds were fully characterized by NMR, IR and UV-Vis spectroscopies and their electrochemistry behaviour was studied by cyclic voltammetry. Quadratic hyperpolarizabilities (beta) of three of the complexes have been determined by hyper-Rayleigh scattering (HRS) measurements at fundamental wavelength of 1500 nm and the calculated static beta(0) values are found to fall in the range 65-212 x 10(-30) esu. Compound presenting beta(0) = 212 x 10(-30) esu has revealed to be 1.2 times more efficient than urea standard in the second harmonic generation (SHG) property, measured in the solid state by Kurtz powder technique, using a Nd:YAG laser (1064 nm). (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Highly dispersed nanocomposites of polyaniline(PANI) and oxidized single wall carbon nanotubes(SWNTs) have been prepared using dodecylbenzenesulfonic acid as dispersant. The materials were characterized via resonance Raman and electronic absorption spectroscopies. The behavior of the composites as a function of the applied potential was also investigated using in situ Raman electrochemical measurements. The results obtained at E(laser) = 1.17 eV suggest that a charge-transfer process occur between PANI and semiconducting nanotubes for samples where the metallic tubes are previously oxidized. The spectroelectrochemical data show that the presence of SWNTs prevents the oxidation of PANI rings. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
In dieser Arbeit wird die Entwicklung und experimentelle Umsetzung einer kontinuierlichen, kohärenten Lichtquelle im vakuumultravioletten Wellenlängenbereich um 122 nm präsentiert. Diese basiert auf der nichtlinearen optischen Summenfrequenzmischung dreier Fundamentallaserstrahlen in einer mit Quecksilberdampf gefüllten Hohlfaser. Die Wellenlängen der fundamentalen Laser sind dabei an der Niveaustruktur des Quecksilbers orientiert, um eine mehrfach resonante Überhöhung der nichtlinearen Suszeptibilität zu erreichen. Der transversale Einschluss der Lichtfelder in der Faser verlängert die Wechselwirkungszone mit dem nichtlinearen Medium um mehrere Größenordnungen gegenüber dem Regime fokussierter Strahlen und erlaubt so signifikante Steigerungen der Mischeffizienz.rnrnIm Zuge dieser Arbeit wurde neben einer umfassenden mathematischen Analyse des nichtlinearen Mischprozesses unter Einfluss der Fasercharakteristika eine Apparatur zur Erzeugung und Detektion vakuumultravioletter Strahlung entwickelt. Die Generierung ausreichend hoher Dampfdichten innerhalb des 50 µm durchmessenden Faserkerns konnten spektroskopisch nachgewiesen werden.rnrnDas erste erfolgreiche Summenfrequenzmischen zu 121,26 nm in der Faser wurde demonstriert. Die erzielten Mischeffizienzen sind bereits mit denen vergleichbar, welche unter Verwendung fokussierter Strahlen erreicht werden, obwohl eine Phasenanpassung in der Faser bisher nicht möglich war. Die Ergebnisse dieser Arbeit markieren damit einen wichtigen Schritt hin zu Leistungssteigerungen kohärenter, kontinuierlicher vakuumultravioletter Lichtquellen.rnrnEine solche Quelle wird für zukünftige Laserkühlung von magnetisch gefangenem Antiwasserstoff auf dem Lyman-Alpha Übergang, sowie die Rydberganregung von Calciumionen in einer Paulfalle zur Implementierung quantenlogischer Operationen benötigt.rnrnFerner hat eine Untersuchung der, für eine effiziente Konversion essentiellen, 6^1S_0 - 7^1S_0 Zwei-Photonen Resonanz in Quecksilber Hinweise auf eine bis dato experimentell nicht beobachtete, auf einer Mehr-Photonen Anregung beruhende Licht-induzierte Drift ergeben.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
The spectral and nonlinear optical characteristics of nano ZnO and its composites are investigated. The fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength and there is a red shift in emission peak with excitation wavelength. Apart from the observation of the reported ultra violet and green emissions, our results reveal that additional blue emissions at 420 nm and 490 nm are developed with increasing particle size. Systematic studies on nano ZnO have indicated the presence of luminescence due to excitonic emissions when excited with 255 nm as well as significant contribution from surface defect states when excited with 325 nm. In the weak confinement regime, the third-order optical susceptibility χ(3) increases with increasing particle size (R) and annealing temperature (T) and a R2 and T2.5 dependence of χ(3) is obtained for nano ZnO. ZnO nanocolloids exhibit induced absorption whereas the self assembled films of ZnO exhibit saturable absorption due to saturation of linear absorption of ZnO defect states and electronic effects. ZnO nanocomposites exhibit negative nonlinear index of refraction which can be attributed to two photon absorption followed by weak free carrier absorption. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. The nonlinear response of ZnO nanocomposites is wavelength dependent and switching from induced absorption to saturable absorption has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an optical limiter. ZnO based nanocomposites are potential materials for enhanced and tunable light emission and for the development of nonlinear optical devices with a relatively small optical limiting threshold.
Resumo:
The spectral and nonlinear optical properties of ZnO based nanocomposites prepared by colloidal chemical synthesis are investigated. Very strong UV emissions are observed from ZnO–Ag, ZnO– Cu and ZnO–SiO2 nanocomposites. The strongest visible emission of a typical ZnO–Cu nanocomposite is over ten times stronger than that of pure Cu due to transition from deep donor level to the copper induced level. The optical band gap of ZnO–CdS and ZnO–TiO2 nanocomposites is tunable and emission peaks changes almost in proportion to changes in band gap. Nonlinear optical response of these nanocomposites is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450–650 nm at resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absoption, interband absorption and nonlinear scattering mechanisms. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and ZnO–TiO2. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an RSA based optical limiter. These nanocomposites can be used as optical limiters and are potential materials for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
The spectral and nonlinear optical properties of ZnO based nanocomposites prepared by colloidal chemical synthesis are investigated. Very strong UV emissions are observed from ZnO–Ag, ZnO– Cu and ZnO–SiO2 nanocomposites. The strongest visible emission of a typical ZnO–Cu nanocomposite is over ten times stronger than that of pure Cu due to transition from deep donor level to the copper induced level. The optical band gap of ZnO–CdS and ZnO–TiO2 nanocomposites is tunable and emission peaks changes almost in proportion to changes in band gap. Nonlinear optical response of these nanocomposites is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450–650 nm at resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absoption, interband absorption and nonlinear scattering mechanisms. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and ZnO–TiO2. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an RSA based optical limiter. These nanocomposites can be used as optical limiters and are potential materials for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
In this article, we present the spectral and nonlinear optical properties of ZnO–CdS nanocomposites prepared by colloidal chemical synthesis. The optical band gap (Eg) of the material is tunable between 2.62 and 3.84 eV. The emission peaks of ZnO–CdS nanocomposites change from 385 to 520 nm almost in proportion to changes in Eg. It is possible to obtain a desired luminescence color from UV to green by simply adjusting the composition. The nonlinear optical response of these samples is studied by using nanosecond laser pulses from a tunable laser at the excitonic resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent, and switching from saturable absorption (SA) to reverse SA (RSA) has been observed for samples as the excitation wavelength changes from the excitonic resonance to off-resonance wavelengths. Such a changeover in the sign of the nonlinearity of ZnO–CdS nanocomposites is related to the interplay of exciton bleach and optical limiting mechanisms. The ZnO–CdS nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior at off-resonant wavelengths. The nonlinear refractive index and the nonlinear absorption increase with increasing CdS volume fraction at 532 nm. The observed nonlinear absorption is attributed to two photon absorption followed by weak free carrier absorption. The enhancement of the third-order nonlinearity in the composites can be attributed to the concentration of exciton oscillator strength. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA based optical limiter. ZnO–CdS is a potential nanocomposite material for the tunable light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
In this article we present the nonlinear optical properties of ZnO–TiO2–SiO2 nanocomposites prepared by colloidal chemical synthesis. Nonlinear optical response of these samples is studied using nanosecond laser pulses at an off-resonance wavelength. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and TiO2. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour. The nonlinear refractive index and the nonlinear absorption increases with increasing ZnO volume fraction. The observed nonlinear absorption is explained by two photon absorption followed by weak free carrier absorption and nonlinear scattering. ZnO–TiO2–SiO2 is a potential nanocomposite material for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
We present the spectral and nonlinear optical properties of ZnO-SiO2 nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed, and the strongest UV emission of a typical ZnO-SiO2 nanocomposite is over three times stronger than that of pure ZnO. The nonlinearity of the silica colloid is low, and its nonlinear response can be improved by making composites with ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absorption and nonlinear scattering. The nonlinear refractive index and the nonlinear absorption increase with increasing ZnO volume fraction and can be attributed to the enhancement of exciton oscillator strength. ZnO-SiO2 is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.