930 resultados para Optic nerve.
Resumo:
Neuroinflammation has long been studied for its connection to the development and progression of Multiple Sclerosis. In recent years, the field has expanded to look at the role of inflammatory processes in a wide range of neurological conditions and cognitive disorders including stroke, amyotrophic lateral sclerosis, and autism. Researchers have also started to note the beneficial impacts of neuroinflammation in certain diseases. Neuroinflammation: New Insights into Beneficial and Detrimental Functions provides a comprehensive view of both the detriments and benefits of neuroinflammation in human health. Neuroinflammation: New Insights into Beneficial and Detrimental Functions opens with two chapters that look at some fundamental aspects of neuroinflammation in humans and rodents. The remainder of the book is divided into two sections which examine both the detrimental and beneficial aspects of inflammation on the brain, spinal cord and peripheral nerves, on various disease states, and in normal aging. These sections provide a broad picture of the role neuroinflammation plays in the physiology and pathology of various neurological disorders. Providing cross-disciplinary coverage, Neuroinflammation: New Insights into Beneficial and Detrimental Functions will be an essential volume for neuroimmunologists, neurobiologists, neurologists, and others interested in the field.
Resumo:
In cultured oligodendrocytes isolated from perinatal rat optic nerves, we have analyzed the expression of ionotropic glutamate receptor subunits as well as the effect of the activation of these receptors on oligodendrocyte viability. Reverse transcription–PCR, in combination with immunocytochemistry, demonstrated that most oligodendrocytes differentiated in vitro express the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR3 and GluR4 and the kainate receptor subunits GluR6, GluR7, KA1 and KA2. Acute and chronic exposure to kainate caused extensive oligodendrocyte death in culture. This effect was partially prevented by the AMPA receptor antagonist GYKI 52466 and was completely abolished by the non-N-methyl-d-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), suggesting that both AMPA and kainate receptors mediate the observed kainate toxicity. Furthermore, chronic application of kainate to optic nerves in vivo resulted in massive oligodendrocyte death which, as in vitro, could be prevented by coinfusion of the toxin with CNQX. These findings suggest that excessive activation of the ionotropic glutamate receptors expressed by oligodendrocytes may act as a negative regulator of the size of this cell population.
Resumo:
Attempts to rescue retinal ganglion cells from retrograde degeneration have had limited success, and the residual function of surviving neurons is not known. Recently, it has been found that axotomized retinal ganglion cells die by apoptotic mechanisms. We have used adult transgenic mice overexpressing the Bcl-2 protein, a powerful inhibitor of apoptosis, as a model for preventing injury-induced cell death in vivo. Several months after axotomy, the majority of retinal ganglion cells survived and exhibited normal visual responses. In control wild-type mice, the vast majority of axotomized retinal ganglion cells degenerated, and the physiological responses were abolished. These results suggest that strategies aimed at increasing Bcl-2 expression, or mimicking its function, might effectively counteract trauma-induced cell death in the central nervous system. Neuronal survival is a necessary condition in the challenge for promoting regeneration and eventually restoring neuronal function.
Resumo:
We describe experiments on behaving rats with electrodes implanted on the cornea, in the optic chiasm, and on the visual cortex; in addition, two red light-emitting diodes (LED) are permanently attached to the skull over the left eye. Recordings timelocked to the LED flashes reveal both the local events at each electrode site and the orderly transfer of visual information from retina to cortex. The major finding is that every stimulus, regardless of its luminance, duration, or the state of retinal light adaptation, elicits an optic nerve volley with a latency of about 10 ms and a duration of about 300 ms. This phenomenon has not been reported previously, so far as we are aware. We conclude that the retina, which originates from the forebrain of the developing embryo, behaves like a typical brain structure: it translates, within a few hundred milliseconds, the chemical information in each pattern of bleached photoreceptors into a corresponding pattern of ganglion cell neuronal information that leaves via the optic nerve. The attributes of each rat ganglion cell appear to include whether the retinal neuropile calls on it to leave after a stimulus and, if so when, within a 300-ms poststimulus epoch. The resulting retinal analysis of the scene, on arrival at the cortical level, is presumed to participate importantly in the creation of visual perceptual experiences.
Resumo:
Using data derived from peptide sequencing of p68/70, a protein doublet induced during optic nerve regeneration in goldfish, we have isolated cDNAs that encode RICH (regeneration-induced CNPase homolog) from a goldfish regenerating retina cDNA library. The predicted RICH protein comprises 411 amino acids, possesses a pI of 4.48, and shows significant homology to the mammalian myelin marker enzyme 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase; EC 3.1.4.37). The mRNA encoding RICH was demonstrated, by both Northern blot analysis and RNase protection assays, to be induced as much as 8-fold in regenerating goldfish retinas at 20 days after nerve crush. Analysis of total RNA samples from various tissues showed a broad distribution of RICH mRNA, with the highest levels observed in gravid ovary. The data obtained strongly suggest that RICH is identical or very similar to p68/70. The molecular cloning of RICH provides the means for a more detailed analysis of its function in nerve regeneration. Additionally, the homology of RICH and CNPase suggests that further investigation may provide additional insight into the role of these proteins in the nervous system.
Resumo:
Background: Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the potential influence of photoreceptor degeneration on retinal ganglion cell survival, and to evaluate functionality, we took advantage of the optic nerve section mouse model. Methods: Surviving retinal ganglion cells were double-stained by exposing both superior colliculi to fluorogold, and by applying dextran-tetramethylrhodamine to the injured optic nerve stump. To assess retinal function in wild-type animals, electroretinograms were recorded on the injured eyes and compared with the contralateral. Similar labelling experiments were carried out on retinal degeneration 1 mice. Surviving retinal ganglion cells were counted 21 days after axotomy and compared with wild-type mice. No functional experiments were performed on retinal degeneration 1 animals because they do not develop normal electroretinographical responses. Results: A significant decrease in retinal ganglion cell density was observed 6 days after axotomy in the wild type. Functional studies revealed that, in scotopic conditions, axotomy induced a significant amplitude decrease in the positive scotopic threshold response component of the electroretinogram. Such decrease paralleled cell loss, suggesting it may be an appropriate technique to evaluate functionality. When comparing retinal ganglion cell densities in wild-type and retinal degeneration 1 mice, a significant greater survival was observed on the latter. Conclusions: After optic nerve section, electroretinographical recordings exhibited a progressive decrease in the amplitude of the positive scotopic threshold response wave, reflecting ganglion cell loss. Interestingly, rod degeneration seemed, at least initially, to protect from axotomy-driven damage.
Resumo:
A variety of visual symptoms have been associated with Alzheimer's disease (AD). These include delays in flash visual evoked potentials which indicate a disruption of the integrity of the visual pathway. Examination of the visual cortex has revealed the presence of both senile plaques and neurofibrillary tangles. The purpose of this study was to determine whether there were differences in the number and/or size of optic nerve axons between AD patients and non-demented age-matched controls. Five optic nerves from AD patients and five from age-matched controls were embedded in epon resin and 1 micron sections prepared on a Reichert ultramicrotome. The sections were then stained in toluidine blue and examined at x400 magnification. The numbers of axons were counted in photographs of three fields taken at random from each section. To evaluate the axon diameters, 70 axons were chosen at random from each patient and measured using a calibrated eyepiece graticule. The total axon counts revealed no significant differences between the AD optic nerves and the age-matched controls. However, the frequency distribution of axon diameters was significantly different in the two groups. In particular, there were fewer larger diameter axons in patients with AD as previously reported. Degeneration of the large diameter axons suggests involvement of the magnocellular as opposed to the parvocellular pathways. Hence, there could be differences in visual performance of AD patients compared with normals which could be important in clinical diagnosis.
Resumo:
Corpora amylacea (CA) are spherical or ovoid bodies 50-50 microns in diameter. They have been described in normal elderly brain as well as in a number of neurodegenerative disorders. In this study, the incidence of CA in the optic nerves of Alzheimer's disease (AD) patients was compared with normal elderly controls. Samples of optic nerves (MRC Brain Bank, Institute of Psychiatry) were taken from 12 AD patients (age range 69-94 years) and 18 controls (43-82 years). Optic nerves were fixed in 2% buffered glutaraldehyde, post-fixed in osmium tetroxide, embedded in epoxy resin and then sectioned to a thickness of 2 microns. Sections were stained with toluidine blue. CA were present in all of the optic nerves examined. In addition, a number of similarly stained but more irregularly shaped bodies were present. Fewer CA were found in the optic nerves of AD patients compared with controls. By contrast, the number or irregularly shaped bodies was increased in AD. In AD, there may be a preferential decline in the large diameter fibres which may mediate the M-cell pathway. Hence, the decline in the incidence of CA in AD may be associated with a reduction in these fibres. It is also possible that the irregualrly shaped bodies are a degeneration product of the CA.
Resumo:
Objective: To study the density and cross-sectional area of axons in the optic nerve in elderly control subjects and in cases of Alzheimer's disease (AD) using an image analysis system. Methods: Sections of optic nerves from control and AD patients were stained with toluidine blue to reveal axon profiles. Results: The density of axons was reduced in both the center and peripheral portions of the optic nerve in AD compared with control patients. Analysis of axons with different cross-sectional areas suggested a specific loss of the smaller sized axons in AD, i.e., those with areas less that 1.99 μm2. An analysis of axons >11 μm2 in cross-sectional area suggested no specific loss of the larger axons in this group of patients. Conclusions: The data suggest that image analysis provides an accurate and reproducible method of quantifying axons in the optic nerve. In addition, the data suggest that axons are lost throughout the optic nerve with a specific loss of the smaller-sized axons. Loss of the smaller axons may explain the deficits in color vision observed in a significant proportion of patients with AD.
Resumo:
Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.
Resumo:
Early detection of glaucoma relies on a detailed knowledge of how the normal optic nerve (ONH) varies within the population. The purpose of this study focused on two main areas; 1. To explore the optic nerve head appearance in the normal optometric population and compare the south Asian (principally Pakistani) with the European white population, correcting for possible ocular and non-ocular influences in a multiple regression model. The main findings were: • The optic discs of the South Asian (SA) and White European (WE) populations were not statistically different in size. The SA group possessed discs with increased cupping and thinner neuro-retinal rims (NRR) compared with the WE group. The SA group also demonstrated a more vertically oval shape than the WE population. These differences were significant at the p<0.01 level. • The upper limits of inter-eye asymmetry were: ≤0.2 for cup to disc area ratio, and 3mmHg for intra-ocular pressure (IOP) for both ethnic groups and this did not increase with age. IOP asymmetry did not vary with gender, ethnicity or a family history of glaucoma and was independent of ONH asymmetry. ONH and IOP asymmetry are therefore independent risk factors when screening for glaucoma for both ethnic groups. 2. To investigate the validity of the ISNT rule: inferior> superior> nasal> temporal NRR thickness in the optometric population. The main findings were: • As disc size increased the disc become rounder and less vertically oval in shape. Vertically oval discs had thicker superior and inferior NRRs and thinner nasal and temporal NRRs compared with rounder disc shapes due to cup shape being independent of disc shape. Vertically oval discs were therefore more likely to obey the ISNT rule than larger rounder discs. • The ISNT rule has a low adherence in our sample of normal eyes (5.7%). However, by removing the nasal sector to become the IST rule, 74.5% of normal eyes obeyed. SA eyes and female gender were more likely to obey the ISNT rule due to increased disc ovality. The IST rule is independent of disc shape and therefore more suitable for assessing discs from both ethnic backgrounds. Obeying the ISNT rule or IST rule was not related to disc or cup size.