801 resultados para Ophthalmic polymer
Resumo:
The objective of this study is to graft the Surface of carbon black, by chemically introducing polymeric chains (Nafion (R) like) with proton-conducting properties. This procedure aims for a better interaction of the proton-conducting phase with the metallic catalyst particles, as well as hinders posterior support particle agglomeration. Also loss of active surface call be prevented. The proton conduction between the active electrocatalyst site and the Nafion (R) ionomer membrane should be enhanced, thus diminishing the ohmic drop ill the polymer electrolyte membrane fuel cell (PEMFC). PtRu nanoparticles were supported on different carbon materials by the impregnation method and direct reduction with ethylene glycol and characterized using amongst others FTIR, XRD and TEM. The screen printing technique was used to produce membrane electrode assemblies (MEA) for single cell tests in H(2)/air(PEMFC) and methanol operation (DMFC). In the PEMFC experiments, PtRu supported on grafted carbon shows 550 mW cm(-2) gmetal(-1) power density, which represents at least 78% improvement in performance, compared to the power density of commercial PtRu/C ETEK. The DMFC results of the grafted electrocatalyst achieve around 100% improvement. The polarization Curves results clearly show that the main Cause of the observed effect is the reduction in ohmic drop, caused by the grafted polymer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Polymer-modified mortar is widely used to set ceramic tiles used as external finishing for high rise buildings in countries such as Brazil, Israel, Singapore and Portugal, mainly because it shows better bond strength and flexibility as compared to the traditional ones. Despite this, the results in the literature already published concerning the long-term performance of those composite mortars are is not conclusive. This paper, based on a laboratory program, compared the performance over time of four commercial polymer-modified adhesive mortars exposed to a typical Brazilian outdoor aging environment and to an indoor environment in terms of mortar flexibility and the bond strength to porcelain tiles. The results show that under laboratory condition, the mortars are more flexible and have higher bond strength than under external condition, and that there is an important correlation between the transversal deformability and the bond strength. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Adhesive mortars are widely used to set porcelain stoneware tiles on buildings because their bond strength and flexibility properties increase the cladding serviceability. However, their long-term performance is not well understood, mainly the degradation of the polymeric matrix. The influence of moisture content on the flexibility of six adhesive mortars is investigated, based on standard EN 12002. Four of them have defined formulations and the other two are commercial and are widely used to set porcelain stoneware tiles on building facades in Brazil. The results show that moisture content above 6% is sufficient to reduce 50% of the mortar deformability, but that the drying process allows it to recover to a value similar to that prior to saturation; a logarithmic function best fits the correlation between moisture content and flexibility; water immersion increases matrix rigidity. It is suggested that standards should consider flexibility tests on both dried and wet samples as a requirement for polymer-modified mortars. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, poly(vinyl butyral) (PVB) film originated from the mechanical separation of windshields was tested as all impact modifier of Polyamide-6 (PA-6). The changes undergone by PVB film during the recycling process and the blend manufacturing were evaluated by thermal analyses, infrared spectroscopy and loss oil ignition. Blends of PA-6/original PVB film and PA-6/recovered PVB film were obtained in concentrations ranging from 90/10 to 60/40. The mechanical properties of the blends were investigated and explained in light of the blends morphologies, which in turns were correlated to the changes undergone by the PVB film during the recycling process. The original film presented a plasticizer content of 33 wt.%, which decreased to as low as 20 wt.%, after the recycling and blend preparation processes. The PA-6/PVB film blends presented lower values of tensile strength and Young`s modulus than Polyamide-6, but all blends presented a dramatic increase in their toughness, with a special feature for the 40 wt.%(, blend, which resulted in a super toughened material (impact strength exceeding 500 J/m). Similar results were obtained with recovered PVB film and super tough blends were also obtained. The use of recovered PVB resulted in a smaller improvement of the impact strength due to the loss of plasticizer undergone during the recycling process. The morphological observations showed that if the interparticle distance is smaller than around 0.2 mu m (critical value), the notched Izod impact strength values increase considerably and the fracture surface of blends exhibit characteristics of tough failure. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the stress relaxation behavior of PMMA/PS blends, with or without random copolymer addition, submitted to step shear strain experiments in the linear and nonlinear regime was studied. The effect of blend composition (ranging from 10 to 30 wt.% of dispersed phase), viscosity ratio (ranging from 0.1 to 7.5), and random copolymer addition (for concentrations up to 8 wt.% with respect to the dispersed phase) was evaluated and correlated to the evolution of the morphology of the blends. All blends presented three relaxation stages: a first fast relaxation which was attributed to the relaxation of the pure phases, a second one which was characterized by the presence of a plateau, and a third fast one. The relaxation was shown to be faster for less extended and smaller droplets and to be influenced by coalescence for blends with a dispersed phase concentration larger than 20 wt.%. The relaxation of the blend was strongly influenced by the matrix viscosity. The addition of random copolymer resulted in a slower relaxation of the droplets.
Resumo:
In this work a new method for crosslinking ultra-thin films with potential applications in sensor systems is proposed. The films were produced by layer-by-layer (LbL) assembly using a conducting polymer, poly(o-ethoxyaniline) (POEA), alternated with a thermosetting resin, novolac-type phenolformaldehyde (PF), crosslinked by a simple thermal treatment. The PF resin served as both alternating and crosslinking agents. The films were characterized by Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, thermogravimetry (TG), desorption, doping/dedoping cycling and electrical measurements. The results showed that film architecture and crosslinking degree can be controlled by the conditions used for film deposition (number of bilayers, polymer concentration, pH, and deposition time), and crosslinking time. Moreover, this approach offers several advantages such as fast curing time and low cost, indicating that these films can be used to produce sensors with improved stability.
Resumo:
This work investigates the effects of photodegradation on the environmental stress cracking resistance of polycarbonate (PC). Injection molded samples were exposed to the ultraviolet (UV) light for various times in the laboratory prior to solvent contact. The bars were then stressed with two different loads in a tensile testing machine under the presence of ethanol. During this period, the stress relaxation was monitored and, after unloading, the ultimate properties were evaluated. Complementary tests were done by size exclusion chromatography, UV-visible spectroscopy, scanning electron microscopy, and light microscopy. The results indicated that ethanol causes significant modification in PC, with extensive surface crazing as well as reduction in mechanical properties. The previous degraded samples showed a higher level of stress relaxation and a greater loss in tensile strength in comparison with the undegraded ones. The synergist action of photodegradation and stress cracking in PC may be a consequence of the chemical changes caused by oxidation.
Resumo:
The polymer tensiometer is a novel instrument to measure soil water pressure heads from saturation to permanent wilting conditions. We used tensiometers of this type in an experiment to determine the hydraulic properties of evaporating soil samples in the laboratory. Relative errors in the hydraulic conductivity function in the wet part were high due to the relatively low accuracy of the pressure transducers, resulting in a large uncertainty in the hydraulic gradient and therefore in the calculated hydraulic conductivity. In the dry part, the error related to this accuracy was on the same order of magnitude as the error related to balance accuracy. Therefore, the method can be assumed adequate for measuring soil hydraulic properties except under very wet conditions. In our experiments, relative error and bias increased significantly at pressure heads less negative than -1 m.
Resumo:
Many therapeutic agents are commercialized under their racemic form. The enantiomers can show differences in the pharmacokinetic and pharmacodynamic profile. The use of a pure enantiomer in pharmaceutical formulations may result in a better therapeutic index and fewer adverse effects. Atropine, an alkaloid of Atropa belladonna, is a racemic mixture of l-hyoscyamine and d-hyoscyamine. It is widely used to dilate the pupil. To quantify these enantiomers in ophthalmic solutions, an HPLC method was developed and validated using a Chiral AGP (R) column at 20 degrees C. The mobile phase consisted of a buffered phosphate solution (containing 10 mM 1-octanesulfonic acid sodium salt and 7.5 mM triethylamine, adjusted to pH 7.0 with orthophosphoric acid) and acetonitrile (99 + 1, v/v). The flow rate was 0.6 mL/min, with UV detection at 205 nm. In the concentration range of 14.0-26.0 mu g/mL, the method was found to be linear (r > 0.9999), accurate (with recovery of 100.1-100.5%), and precise (RSD system: <= 0.6%; RSD intraday: <= 1.1%; RSD interday: <= 0.9%). The method was specific, and the standard and sample solutions were stable for up to 72 h. The factorial design assures robustness with a variation of +/-10% in the mobile phase components and 2 degrees C of column temperature. The complete validation, including stress testing and factorial design, was studied and is presented in this research.
Resumo:
A simplex-lattice statistical project was employed to study an optimization method for a preservative system in an ophthalmic suspension of dexametasone and polymyxin B. The assay matrix generated 17 formulas which were differentiated by the preservatives and EDTA (disodium ethylene diamine-tetraacetate), being the independent variable: X-1 = chlorhexidine digluconate (0.010 % w/v); X-2 = phenylethanol (0.500 % w/v); X-3 = EDTA (0.100 % w/v). The dependent variable was the Dvalue obtained from the microbial challenge of the formulas and calculated when the microbial killing process was modeled by an exponential function. The analysis of the dependent variable, performed using the software Design Expert/W, originated cubic equations with terms derived from stepwise adjustment method for the challenging microorganisms: Pseudomonas aeruginosa, Burkholderia cepacia, Staphylococcus aureus, Candida albicans and Aspergillus niger. Besides the mathematical expressions, the response surfaces and the contour graphics were obtained for each assay. The contour graphs obtained were overlaid in order to permit the identification of a region containing the most adequate formulas (graphic strategy), having as representatives: X-1 = 0.10 ( 0.001 % w/v); X-2 = 0.80 (0.400 % w/v); X-3 = 0.10 (0.010 % w/v). Additionally, in order to minimize responses (Dvalue), a numerical strategy corresponding to the use of the desirability function was used, which resulted in the following independent variables combinations: X-1 = 0.25 (0.0025 % w/v); X-2 = 0.75 (0.375 % w/v); X-3 = 0. These formulas, derived from the two strategies (graphic and numerical), were submitted to microbial challenge, and the experimental Dvalue obtained was compared to the theoretical Dvalue calculated from the cubic equation. Both Dvalues were similar to all the assays except that related to Staphylococcus aureus. This microorganism, as well as Pseudomonas aeruginosa, presented intense susceptibility to the formulas independently from the preservative and EDTA concentrations. Both formulas derived from graphic and numerical strategies attained the recommended criteria adopted by the official method. It was concluded that the model proposed allowed the optimization of the formulas in their preservation aspect.
Resumo:
Methods of stabilization and formulation of proteins are important in both biopharmaceutical and biocatalysis industries. Polymers are often used as modifiers of characteristics of biological macromolecules to improve the biochemical activity and stability of proteins or drug bioavailability. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Relative thermal stability was undertaken by incubation of GFP at varying temperatures and GFP fluorescence was used as a reporter for unfolding. At 80 degrees C, DEAE-dextran did not have any effect on GFP fluorescence, indicating that it does not confer stability.
Resumo:
The aim of the present work was to obtain an ophthalmic delivery system with improved mechanical and mucoadhesive properties that could provide prolonged retention time for the treatment of ocular diseases. For this, an in situ forming gel comprised of the combination of a thermosetting polymer, poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) (PEO-PPO-PEO, poloxamer), with a mucoadhesive agent (chitosan) was developed. Different polymer ratios were evaluated by oscillatory rheology, texture and mucoadhesive profiles. Scintigraphy studies in humans were conduced to verify the retention time of the formulations developed. The results showed that chitosan improves the mechanical strength and texture properties of poloxamer formulations and also confers mucoadhesive properties in a concentration-dependent manner. After a 10-min instillation of the poloxamer/chitosan 16:1 formulation in human eyes, 50-60% of the gel was still in contact with the cornea surface, which represents a fourfold increased retention in comparison with a conventional solution. Therefore, the developed formulation presented adequate mechanical and sensorial properties and remained in contact with the eye surface for a prolonged time. In conclusion, the in situ forming gel comprised of poloxamer/chitosan is a promising tool for the topical treatment of ocular diseases. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Commercial Nafion® 117 membranes were successfully modified by in-situ reactions (sol-gel of TEOS and/or polymerization of aniline) within Nafion structures. Water-methanol permeability and proton conductivity were investigated in order to determine the potential performance of these membranes for DMFC systems. Silica-polyaniline modification resulted in 84% methanol crossover reduction, from 2.45x10^-5 cm2.s^-1 for conventional Nafion membranes to 3.71x10^-6 cm2.s^-1 for the modified silica-polyaniline composite membrane at 75 degrees C. In addition, conductivity was not hindered, as the polyaniline-Nafion membrane increased from 12.2 to 15 mS.cm^-1 as compared to Nafion, while a reduction of 11% was observed for silica-polyaniline-Nafion composite membrane. The results in this work strongly suggest the potential of polyaniline nanocomposites to enhance the performance of DMFCs.
Resumo:
A gas product analysis has been conducted on gamma-irradiated samples of poly(lactic acid) (PLA) and poly(glycolic acid) (PGA) by means of gas chromatography. The major volatile products have been identified to be CO, CO2, CH4 and C2H6 for PLA, and CO and CO2 for PGA. In addition, the yield of evolved gases for PLA has been found to be 1.81 for CO2, 0.98 for CO, 0.026 for CH4 and 0.012 for C2H6; and that for PGA to be 1.70 for CO2 and 0.42 for CO. The new chain ends formed due to gamma-induced bond cleavage in PLA have been assigned to CH3-CH2-CO-O- and CH3-CH2-O-CO-, and the G values for formation of these chain ends were found to be 1.9 and 0.6, respectively. The G value for chain scission reported previously of 2.3 is comparable with that for the formation of the propanoic acid end group. (C) 1997 Elsevier Science Limited.
Resumo:
This paper reports the results of an experimental investigation into the fluidized-bed coating of cylindrical metal specimens using two types of thermoplastic powders, Rilsan(R) PA11, a nylon-11 powder produced by Elf Atochem, France and Cotene(TM) 4612, a linear low density polyethylene powder produced by J.R Courtenay (New Zealand). The effects of dipping time, preheat temperature and particle size distribution on coating thickness and surface finish were investigated. Consistent trends in coating thickness growth with dipping time were obtained for both nylon-11 and polyethylene powders with increases in coating thickness with preheat temperature. For the same preheat temperature, the lower melting point of polyethylene results in thicker coatings compared to those of nylon-11. There is a negligible change in the coating thickness for sieved powders compared to that for unsieved powders. A pre-heat temperatures of between 240 degrees C and 300 degrees C is necessary to achieve an acceptable surface finish with both nylon-11 and polyethylene powders. To minimize errors in achieving the desired coating thickness, dipping times shorter than 2 s are not recommended. The use of graphs of coating thickness versus dipping time in combination with the coating surface roughness plots presented in this paper enable the optimal choice of pre-heat temperature and dipping time to achieve acceptable surface finish. (C) 1999 Elsevier Science S.A. All rights reserved.