986 resultados para Open State


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Translation initiation factors eIF4A and eIF4G form, together with the cap-binding factor eIF4E, the eIF4F complex, which is crucial for recruiting the small ribosomal subunit to the mRNA 5' end and for subsequent scanning and searching for the start codon. eIF4A is an ATP-dependent RNA helicase whose activity is stimulated by binding to eIF4G. We report here the structure of the complex formed by yeast eIF4G's middle domain and full-length eIF4A at 2.6-A resolution. eIF4A shows an extended conformation where eIF4G holds its crucial DEAD-box sequence motifs in a productive conformation, thus explaining the stimulation of eIF4A's activity. A hitherto undescribed interaction involves the amino acid Trp-579 of eIF4G. Mutation to alanine results in decreased binding to eIF4A and a temperature-sensitive phenotype of yeast cells that carry a Trp579Ala mutation as its sole source for eIF4G. Conformational changes between eIF4A's closed and open state provide a model for its RNA-helicase activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionotropic glutamate receptors are important excitatory neurotransmitter receptors in the mammalian central nervous system that have been implicated in a number of neuropathologies such as epilepsy, ischemia, and amyotrophic lateral sclerosis. Glutamate binding to an extracellular ligand binding domain initiates a series of structural changes that leads to the formation of a cation selective transmembrane channel, which consequently closes due to desensitization of the receptor. The crystal structures of the AMPA subtype of the glutamate receptor have been particularly useful in providing initial insight into the conformational changes in the ligand binding domain; however, these structures are limited by crystallographic constraint. To gain a clear picture of how agonist binding is coupled to channel activation and desensitization, it is essential to study changes in the ligand binding domain in a dynamic, physiological state. In this dissertation, a technique called Luminescence Resonance Energy Transfer was used to determine the conformational changes associated with activation and desensitization in a functional AMPA receptor (ÄN*-AMPA) that contains the ligand binding domain and transmembrane segments; ÄN*-AMPA has been modified such that fluorophores can be introduced at specific sites to serve as a readout of cleft closure or to establish intersubunit distances. Previous structural studies of cleft closure of the isolated ligand binding domain in conjunction with functional studies of the full receptor suggest that extent of cleft closure correlates with extent of activation. Here, LRET has been used to show that a similar relationship between cleft closure and activation is observed in the “full length” receptor showing that the isolated ligand binding domain is a good model of the domain in the full length receptor for changes within a subunit. Similar LRET investigations were used to study intersubunit distances specifically to probe conformational changes between subunits within a dimer in the tetrameric receptor. These studies show that the dimer interface is coupled in the open state, and decoupled in the desensitized state, similar to the isolated ligand binding domain crystal structure studies. However, we show that the apo state dimer interface is not pre-formed as in the crystal structure, hence suggesting a mechanism for functional transitions within the receptor based on LRET distances obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grass carp reovirus (GCRV) is a member of the Aquareovirus genus of the family Reoviridae, a large family of double-stranded RNA (dsRNA) viruses infecting plants, insects, fishes and mammals. We report the first subnanometer-resolution three-dimensional structures of both GCRV core and virion by cryoelectron microscopy. These structures have allowed the delineation of interactions among the over 1000 molecules in this enormous macromolecular machine and a detailed comparison with other dsRNA viruses at the secondary-structure level. The GCRV core structure shows that the inner proteins have strong structural similarities with those of orthoreoviruses even at the level of secondary-structure elements, indicating that the structures involved in viral dsRNA interaction and transcription are highly conserved. In contrast, the level of similarity in structures decreases in the proteins situated in the outer layers of the virion. The proteins involved in host recognition and attachment exhibit the least similarities to other members of Reoviridae. Furthermore, in GCRV, the RNA-translocating turrets are in an open state and lack a counterpart for the sigma1 protein situated on top of the close turrets observed in mammalian orthoreovirus. Interestingly, the distribution and the organization of GCRV core proteins resemble those of the cytoplasmic polyhedrosis virus, a cypovirus and the structurally simplest member of the Reoviridae family. Our results suggest that GCRV occupies a unique structure niche between the simpler cypoviruses and the considerably more complex mammalian orthoreovirus, thus providing an important model for understanding the structural and functional conservation and diversity of this enormous family of dsRNA viruses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The contribution of several individual ribozyme⋅substrate base pairs to binding and catalysis has been investigated using hammerhead ribozyme substrates that were truncated at their 3′ or 5′ ends. The base pairs at positions 1.1–2.1 and 15.2–16.2, which flank the conserved core, each contribute 104-fold in the chemical step, without affecting substrate binding. In contrast, base pairs distal to the core contribute to substrate binding but have no effect on the chemical step. These results suggest a “fraying model” in which each ribozyme⋅substrate helix can exist in either an unpaired (“open”) state or a helical (“closed”) state, with the closed state required for catalysis. The base pairs directly adjacent to the conserved core contribute to catalysis by allowing the closed state to form. Once the number of base pairs is sufficient to ensure that the closed helical state predominates, additional residues provide stabilization of the helix, and therefore increase binding, but have no further effect on the chemical step. Remarkably, the >5 kcal/mol free energy contribution to catalysis from each of the internal base pairs is considerably greater than the free energy expected for formation of a base pair. It is suggested that this unusually large energetic contribution arises because free energy that is typically lost in constraining residues within a base pair is expressed in the transition state, where it is used for positioning. This extends the concept of “intrinsic binding energy” from protein to RNA enzymes, suggesting that intrinsic binding energy is a fundamental feature of biological catalysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel is regulated by the interaction of ATP with its two cytoplasmic nucleotide-binding domains (NBD). Although ATP hydrolysis by the NBDs is required for normal gating, the influence of ATP binding versus hydrolysis on specific steps in the gating cycle remains uncertain. Earlier work showed that the absence of Mg2+ prevents hydrolysis. We found that even in the absence of Mg2+, ATP could support channel activity, albeit at a reduced level compared with the presence of Mg2+. Application of ATP with a divalent cation, including the poorly hydrolyzed CaATP complex, increased the rate of opening. Moreover, in CFTR variants with mutations that disrupt hydrolysis, ATP alone opened the channel and Mg2+ further enhanced ATP-dependent opening. These data suggest that ATP alone can open the channel and that divalent cations increase ATP binding. Consistent with this conclusion, when we mutated an aspartate thought to bind Mg2+, divalent cations failed to increase activity compared with ATP alone. Two observations suggested that divalent cations also stabilize the open state. In wild-type CFTR, CaATP generated a long duration open state, whereas ATP alone did not. With a CFTR variant in which hydrolysis was disrupted, MgATP, but not ATP alone, produced long openings. These results suggest a gating cycle for CFTR in which ATP binding opens the channel and either hydrolysis or dissociation leads to channel closure. In addition, the data suggest that ATP binding and hydrolysis by either NBD can gate the channel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Generalized epilepsy with febrile seizures plus (GEFS+), a clinical subset of febrile seizures (FS), is characterized by frequent episodes beyond 6 years of age (FS+) and various types of subsequent epilepsy. Mutations in β1 and αI-subunit genes of voltage-gated Na+ channels have been associated with GEFS+1 and 2, respectively. Here, we report a mutation resulting in an amino acid exchange (R187W) in the gene encoding the α-subunit of neuronal voltage-gated Na+ channel type II (Nav1.2) in a patient with FS associated with afebrile seizures. The mutation R187W occurring on Arg187, a highly conserved residue among voltage-gated Na+ channels, was not found in 224 alleles of unaffected individuals. Whole-cell patch clamp recordings on human embryonic kidney (HEK) cells expressing a rat wild-type (rNav1.2) and the corresponding mutant channels showed that the mutant channel inactivated more slowly than wild-type whereas the Na+ channel conductance was not affected. Prolonged residence in the open state of the R187W mutant channel may augment Na+ influx and thereby underlie the neuronal hyperexcitability that induces seizure activity. Even though a small pedigree could not show clear cosegregation with the disease phenotype, these findings strongly suggest the involvement of Nav1.2 in a human disease and propose the R187W mutation as the genetic defect responsible for febrile seizures associated with afebrile seizures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Voltage-gated Na+ channels are the molecular targets of local anesthetics, class I antiarrhythmic drugs, and some anticonvulsants. These chemically diverse drugs inhibit Na+ channels with complex voltage- and frequency-dependent properties that reflect preferential drug binding to open and inactivated channel states. The site-directed mutations F1764A and Y1771A in transmembrane segment IVS6 of type IIA Na+ channel alpha subunits dramatically reduce the affinity of inactivated channels for the local anesthetic etidocaine. In this study, we show that these mutations also greatly reduce the sensitivity of Na+ channels to state-dependent block by the class Ib antiarrhythmic drug lidocaine and the anticonvulsant phenytoin and, to a lesser extent, reduce the sensitivity to block by the class Ia and Ic antiarrhythmic drugs quinidine and flecainide. For lidocaine and phenytoin, which bind preferentially to inactivated Na+ channels, the mutation F1764A reduced the affinity for binding to the inactivated state 24.5-fold and 8.3-fold, respectively, while Y1771A had smaller effects. For quinidine and flecainide, which bind preferentially to the open Na+ channels, the mutations F1764A and Y1771A reduced the affinity for binding to the open state 2- to 3-fold. Thus, F1764 and Y1771 are common molecular determinants of state-dependent binding of diverse drugs including lidocaine, phenytoin, flecainide, and quinidine, suggesting that these drugs interact with a common receptor site. However, the different magnitude of the effects of these mutations on binding of the individual drugs indicates that they interact in an overlapping, but nonidentical, manner with a common receptor site. These results further define the contributions of F1764 and Y1771 to a complex drug receptor site in the pore of Na+ channels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gap junction channels are formed by members of the connexin gene family and mediate direct intercellular communication through linked hemichannels (connexons) from each of two adjacent cells. While for most connexins, the hemichannels appear to require an apposing hemichannel to open, macroscopic currents obtained from Xenopus oocytes expressing rat Cx46 suggested that some hemichannels can be readily opened by membrane depolarization [Paul, D. L., Ebihara, L., Takemoto, L. J., Swenson, K. I. & Goodenough, D. A. (1991), J. Cell Biol. 115, 1077-1089]. Here we demonstrate by single channel recording that hemichannels comprised of rat Cx46 exhibit complex voltage gating consistent with there being two distinct gating mechanisms. One mechanism partially closes Cx46 hemichannels from a fully open state, gammaopen, to a substate, gammasub, about one-third of the conductance of gammaopen; these transitions occur when the cell is depolarized to inside positive voltages, consistent with gating by transjunctional voltage in Cx46 gap junctions. The other gating mechanism closes Cx46 hemichannels to a fully closed state, gammaclosed, on hyperpolarization to inside negative voltages and has unusual characteristics; transitions between gammaclosed and gammaopen appear slow (10-20 ms), often involving several transient substates distinct from gammasub. The polarity of activation and kinetics of this latter form of gating indicate that it is the mechanism by which these hemichannels open in the cell surface membrane when unapposed by another hemichannel. Cx46 hemichannels display a substantial preference for cations over anions, yet have a large unitary conductance (approximately 300 pS) and a relatively large pore as inferred from permeability to tetraethylammonium (approximately 8.5 angstroms diameter). These hemichannels open at physiological voltages and could induce substantial cation fluxes in cells expressing Cx46.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phenomenon of desensitization is universal, but its mechanism is still ill-understood and controversial. A recently published study [Lin, F. & Stevens, C. F. (1994) J. Neurosci, 14, 2153-2160] attempted to cast light on the mechanism of desensitization of N-methyl-D-aspartate (NMDA) receptors, in particular the vexed question of whether the channel must open before it can desensitize. During the desensitizing preexposure to agonist in those experiments, more desensitization was produced when channel openings were observed than when no openings were observed. The conclusion that "desensitization occurs more rapidly from the open state" unfortunately was based on a stochastic fallacy, and we present here a theoretical treatment and illustration showing that the observed behavior is predicted by a simple mechanism in which desensitization can occur only from a shut state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gene expression studies from hematopoietic stem cell (HSC) populations purified to variable degrees have defined a set of sternness genes. Unexpectedly, results also hinted toward a HSC chromatin poised in a wide-open state. With the aim of providing a robust tool for further studies into the molecular biology of HSCs, the studies herein describe the construction and comparative molecular analysis of A-phage cDNA libraries from highly purified HSCs that retained their long-term repopulating activities (long-term HSCs [LT-HSCs]) and from short-term repopulating HSCs that were largely depleted of these activities. Microarray analysis of the libraries confirmed the previous results but also revealed an unforeseen preferential expression of translation- and metabolism-associated genes in the LT-HSCs. Therefore, these data indicate that HSCs are quiescent only in regard of proliferative activities but are in a state of readiness to provide the metabolic and translational activities required after induction of proliferation and exit from the HSC pool.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ginkgolides are potent blockers of the glycine receptor Cl- channel (GlyR) pore. We sought to identify their binding sites by comparing the effects of ginkgolides A, B and C and bilobalide on alpha 1, alpha 2, alpha 1 beta and alpha 2 beta GlyRs. Bilobalide sensitivity was drastically reduced by incorporation of the beta subunit. In contrast, the sensitivities to ginkgolides B and C were enhanced by beta subunit expression. However, ginkgolide A sensitivity was increased in the alpha 2 beta GlyR relative to the alpha 2 GlyR but not in the alpha 1 beta GlyR relative to the alpha 1 GlyR. We hypothesised that the subunit-specific differences were mediated by residue differences at the second transmembrane domain 2' and 6' pore-lining positions. The increased ginkgolide A sensitivity of the alpha 2 beta GlyR was transferred to the alpha 1 beta GlyR by the G2'A (alpha 1 to alpha 2 subunit) substitution. In addition, the alpha 1 subunit T6'F mutation abolished inhibition by all ginkgolides. As the ginkgolides share closely related structures, their molecular interactions with pore-lining residues were amenable to mutant cycle analysis. This identified an interaction between the variable R2 position of the ginkgolides and the 2' residues of both alpha 1 and beta subunits. These findings provide strong evidence for ginkgolides binding at the 2' pore-lining position.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Molecular, 2016.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One important component with particular relevance in battery performance is the cathode, being one of the main responsible elements for cell capacity and cycle life. Carbon coated lithium iron phosphate, C-LiFePO4, active material is one of the most promising cathode materials for the next generation of large scale lithium ion battery applications and strong research efforts are being devoted to it, due to its excellent characteristics, including high capacity, ~170 mAh/g, and safety. This review summarizes the main developments on C-LiFePO4 based cathode film preparation and performance. The effect of the binder, conductive additive, relationship between active material-binder-conductive additive and drying step, in the electrode film fabrication and performance is presented and discussed. Finally, after the presentation of the cell types fabricated with C-LiFePO4 active material and their performance, some conclusions and guidelines for further investigations are outlined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Panel at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014