879 resultados para Ontologies (Information Retrieval)
Resumo:
This paper presents a framework for evaluating information retrieval of medical records. We use the BLULab corpus, a large collection of real-world de-identified medical records. The collection has been hand coded by clinical terminol- ogists using the ICD-9 medical classification system. The ICD codes are used to devise queries and relevance judge- ments for this collection. Results of initial test runs using a baseline IR system are provided. Queries and relevance judgements are online to aid further research in medical IR. Please visit: http://koopman.id.au/med_eval.
Resumo:
RÉSUMÉ. La prise en compte des troubles de la communication dans l’utilisation des systèmes de recherche d’information tels qu’on peut en trouver sur le Web est généralement réalisée par des interfaces utilisant des modalités n’impliquant pas la lecture et l’écriture. Peu d’applications existent pour aider l’utilisateur en difficulté dans la modalité textuelle. Nous proposons la prise en compte de la conscience phonologique pour assister l’utilisateur en difficulté d’écriture de requêtes (dysorthographie) ou de lecture de documents (dyslexie). En premier lieu un système de réécriture et d’interprétation des requêtes entrées au clavier par l’utilisateur est proposé : en s’appuyant sur les causes de la dysorthographie et sur les exemples à notre disposition, il est apparu qu’un système combinant une approche éditoriale (type correcteur orthographique) et une approche orale (système de transcription automatique) était plus approprié. En second lieu une méthode d’apprentissage automatique utilise des critères spécifiques , tels que la cohésion grapho-phonémique, pour estimer la lisibilité d’une phrase, puis d’un texte. ABSTRACT. Most applications intend to help disabled users in the information retrieval process by proposing non-textual modalities. This paper introduces specific parameters linked to phonological awareness in the textual modality. This will enhance the ability of systems to deal with orthographic issues and with the adaptation of results to the reader when for example the reader is dyslexic. We propose a phonology based sentence level rewriting system that combines spelling correction, speech synthesis and automatic speech recognition. This has been evaluated on a corpus of questions we get from dyslexic children. We propose a specific sentence readability measure that involves phonetic parameters such as grapho-phonemic cohesion. This has been learned on a corpus of reading time of sentences read by dyslexic children.
Resumo:
Language Modeling (LM) has been successfully applied to Information Retrieval (IR). However, most of the existing LM approaches only rely on term occurrences in documents, queries and document collections. In traditional unigram based models, terms (or words) are usually considered to be independent. In some recent studies, dependence models have been proposed to incorporate term relationships into LM, so that links can be created between words in the same sentence, and term relationships (e.g. synonymy) can be used to expand the document model. In this study, we further extend this family of dependence models in the following two ways: (1) Term relationships are used to expand query model instead of document model, so that query expansion process can be naturally implemented; (2) We exploit more sophisticated inferential relationships extracted with Information Flow (IF). Information flow relationships are not simply pairwise term relationships as those used in previous studies, but are between a set of terms and another term. They allow for context-dependent query expansion. Our experiments conducted on TREC collections show that we can obtain large and significant improvements with our approach. This study shows that LM is an appropriate framework to implement effective query expansion.
Resumo:
Purpose – Interactive information retrieval (IR) involves many human cognitive shifts at different information behaviour levels. Cognitive science defines a cognitive shift or shift in cognitive focus as triggered by the brain's response and change due to some external force. This paper aims to provide an explication of the concept of “cognitive shift” and then report results from a study replicating Spink's study of cognitive shifts during interactive IR. This work aims to generate promising insights into aspects of cognitive shifts during interactive IR and a new IR evaluation measure – information problem shift. Design/methodology/approach – The study participants (n=9) conducted an online search on an in-depth personal medical information problem. Data analysed included the pre- and post-search questionnaires completed by each study participant. Implications for web services and further research are discussed. Findings – Key findings replicated the results in Spink's study, including: all study participants reported some level of cognitive shift in their information problem, information seeking and personal knowledge due to their search interaction; and different study participants reported different levels of cognitive shift. Some study participants reported major cognitive shifts in various user-based variables such as information problem or information-seeking stage. Unlike Spink's study, no participant experienced a negative shift in their information problem stage or level of information problem understanding. Originality/value – This study builds on the previous study by Spink using a different dataset. The paper provides valuable insights for further research into cognitive shifts during interactive IR.
Resumo:
This position paper provides an overview of work conducted and an outlook of future directions within the field of Information Retrieval (IR) that aims to develop novel models, methods and frameworks inspired by Quantum Theory (QT).
Resumo:
Nowadays, everyone can effortlessly access a range of information on the World Wide Web (WWW). As information resources on the web continue to grow tremendously, it becomes progressively more difficult to meet high expectations of users and find relevant information. Although existing search engine technologies can find valuable information, however, they suffer from the problems of information overload and information mismatch. This paper presents a hybrid Web Information Retrieval approach allowing personalised search using ontology, user profile and collaborative filtering. This approach finds the context of user query with least user’s involvement, using ontology. Simultaneously, this approach uses time-based automatic user profile updating with user’s changing behaviour. Subsequently, this approach uses recommendations from similar users using collaborative filtering technique. The proposed method is evaluated with the FIRE 2010 dataset and manually generated dataset. Empirical analysis reveals that Precision, Recall and F-Score of most of the queries for many users are improved with proposed method.
Resumo:
For more than a decade research in the field of context aware computing has aimed to find ways to exploit situational information that can be detected by mobile computing and sensor technologies. The goal is to provide people with new and improved applications, enhanced functionality and better use experience (Dey, 2001). Early applications focused on representing or computing on physical parameters, such as showing your location and the location of people or things around you. Such applications might show where the next bus is, which of your friends is in the vicinity and so on. With the advent of social networking software and microblogging sites such as Facebook and Twitter, recommender systems and so on context-aware computing is moving towards mining the social web in order to provide better representations and understanding of context, including social context. In this paper we begin by recapping different theoretical framings of context. We then discuss the problem of context- aware computing from a design perspective.
Resumo:
This paper demonstrates an experimental study that examines the accuracy of various information retrieval techniques for Web service discovery. The main goal of this research is to evaluate algorithms for semantic web service discovery. The evaluation is comprehensively benchmarked using more than 1,700 real-world WSDL documents from INEX 2010 Web Service Discovery Track dataset. For automatic search, we successfully use Latent Semantic Analysis and BM25 to perform Web service discovery. Moreover, we provide linking analysis which automatically links possible atomic Web services to meet the complex requirements of users. Our fusion engine recommends a final result to users. Our experiments show that linking analysis can improve the overall performance of Web service discovery. We also find that keyword-based search can quickly return results but it has limitation of understanding users’ goals.
Resumo:
As computers approach the physical limits of information storable in memory, new methods will be needed to further improve information storage and retrieval. We propose a quantum inspired vector based approach, which offers a contextually dependent mapping from the subsymbolic to the symbolic representations of information. If implemented computationally, this approach would provide exceptionally high density of information storage, without the traditionally required physical increase in storage capacity. The approach is inspired by the structure of human memory and incorporates elements of Gardenfors’ Conceptual Space approach and Humphreys et al.’s matrix model of memory.
Resumo:
Background This paper presents a novel approach to searching electronic medical records that is based on concept matching rather than keyword matching. Aim The concept-based approach is intended to overcome specific challenges we identified in searching medical records. Method Queries and documents were transformed from their term-based originals into medical concepts as defined by the SNOMED-CT ontology. Results Evaluation on a real-world collection of medical records showed our concept-based approach outperformed a keyword baseline by 25% in Mean Average Precision. Conclusion The concept-based approach provides a framework for further development of inference based search systems for dealing with medical data.
Resumo:
IT-supported field data management benefits on-site construction management by improving accessibility to the information and promoting efficient communication between project team members. However, most of on-site safety inspections still heavily rely on subjective judgment and manual reporting processes and thus observers’ experiences often determine the quality of risk identification and control. This study aims to develop a methodology to efficiently retrieve safety-related information so that the safety inspectors can easily access to the relevant site safety information for safer decision making. The proposed methodology consists of three stages: (1) development of a comprehensive safety database which contains information of risk factors, accident types, impact of accidents and safety regulations; (2) identification of relationships among different risk factors based on statistical analysis methods; and (3) user-specified information retrieval using data mining techniques for safety management. This paper presents an overall methodology and preliminary results of the first stage research conducted with 101 accident investigation reports.
Resumo:
The Australian e-Health Research Centre and Queensland University of Technology recently participated in the TREC 2011 Medical Records Track. This paper reports on our methods, results and experience using a concept-based information retrieval approach. Our concept-based approach is intended to overcome specific challenges we identify in searching medical records. Queries and documents are transformed from their term-based originals into medical concepts as de ned by the SNOMED-CT ontology. Results show our concept-based approach performed above the median in all three performance metrics: bref (+12%), R-prec (+18%) and Prec@10 (+6%).
Resumo:
Search technologies are critical to enable clinical sta to rapidly and e ectively access patient information contained in free-text medical records. Medical search is challenging as terms in the query are often general but those in rel- evant documents are very speci c, leading to granularity mismatch. In this paper we propose to tackle granularity mismatch by exploiting subsumption relationships de ned in formal medical domain knowledge resources. In symbolic reasoning, a subsumption (or `is-a') relationship is a parent-child rela- tionship where one concept is a subset of another concept. Subsumed concepts are included in the retrieval function. In addition, we investigate a number of initial methods for combining weights of query concepts and those of subsumed concepts. Subsumption relationships were found to provide strong indication of relevant information; their inclusion in retrieval functions yields performance improvements. This result motivates the development of formal models of rela- tionships between medical concepts for retrieval purposes.