990 resultados para Onlay bone graft
Resumo:
The complications of impaction bone grafting in revision hip replacement includes fracture of he femur and subsidence of the prosthesis. In this in vitro study we aimed to investigate whether the use of vibration, combined with a perforated tamp during the compaction of morsellised allograft would reduce peak loads and hoop strains in the femur as a surrogate marker of the risk of fracture and whether it would also improve graft compaction and prosthetic stability. We found that the peak loads and hoop strains transmitted to the femoral cortex during graft compaction and subsidence of the stem in subsequent mechanical testing were reduced. This innovative technique has the potential to reduce the risk of intra-operative fracture and to improve graft compaction and therefore prosthetic stability. © 2007 British Editorial Society of Bone and Joint Surgery.
Resumo:
BACKGROUND: When fresh morselized graft is compacted, as in impaction bone-grafting for revision hip surgery, fat and marrow fluid is either exuded or trapped in the voids between particles. We hypothesized that the presence of incompressible fluid damps and resists compressive forces during impaction and prevents the graft particles from moving into a closer formation, thus reducing the graft strength. In addition, viscous fluid such as fat may act as an interparticle lubricant, thus reducing the interlocking of the particles. METHODS: We performed mechanical shear testing in the laboratory with use of fresh-frozen human femoral-head allografts that had been passed through different orthopaedic bone mills to produce graft of differing particle-size distributions (grading). RESULTS: After compaction of fresh graft, fat and marrow fluid continued to escape on application of normal loads. Washed graft, however, had little lubricating fluid and better contact between the particles, increasing the shear resistance. On mechanical testing, washed graft was significantly (p < 0.001) more resistant to shearing forces than fresh graft was. This feature was consistent for different bone mills that produced graft of different particle-size distributions and shear strengths. CONCLUSIONS: Removal of fat and marrow fluid from milled human allograft by washing the graft allows the production of stronger compacted graft that is more resistant to shear, which is the usual mode of failure. Further research into the optimum grading of particle sizes from bone mills is required.
Resumo:
Background: When fresh morselized graft is compacted, as in impaction bone-grafting for revision hip surgery, fat and marrow fluid is either exuded or trapped in the voids between particles. We hypothesized that the presence of incompressible fluid damps and resists compressive forces during impaction and prevents the graft particles from moving into a closer formation, thus reducing the graft strength. In addition, viscous fluid such as fat may act as an interparticle lubricant, thus reducing the interlocking of the particles. Methods: We performed mechanical shear testing in the laboratory with use of fresh-frozen human femoral-head allografts that had been passed through different orthopaedic bone mills to produce graft of differing particle-size distributions (grading). Results: After compaction of fresh graft, fat and marrow fluid continued to escape on application of normal loads. Washed graft, however, had little lubricating fluid and better contact between the particles, increasing the shear resistance. On mechanical testing, washed graft was significantly (p < 0.001) more resistant to shearing forces than fresh graft was. This feature was consistent for different bone mills that produced graft of different particle-size distributions and shear strengths. Conclusions: Removal of fat and marrow fluid from milled human allograft by washing the graft allows the production of stronger compacted graft that is more resistant to shear, which is the usual mode of failure. Further research into the optimum grading of particle sizes from bone mills is required. Clinical Relevance: Understanding the mechanical properties of milled human allograft is important when impaction grafting is used for mechanical support. A simple means of improving the mechanical strength of graft produced by currently available bone mills, including an intraoperative washing technique, is described.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Computed tomographic scanning is a precise, noinvasive surveying technique that enables the professionals to improve the precision of implant placement by building a prototype that allows the confection of surgical guides. The authors present a clinical case of anterior tooth rehabilitation with frozen homogenous bone graft and immediately loaded titanium implant using computer-guided surgery. A multislice computed tomography was realized, and a prototype was built. All the procedures were previously realized in the prototype before started in the patient. This technique allows a better surgical planning, makes the procedures more accurate, and reduces surgery time.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: The aim of the present investigation was to histologically analyze the effect of using lyophilized bovine bone (GenOx (R) organic matrix) with (or without) guided tissue regeneration (using a decalcified cortical osseous membrane [GenDerm (R)]) on bone healing in surgically created critical-size defects created in rat tibia.Material and methods: Surgical critical-size bone defects were created in 64 animals that were randomly divided into four groups: group I (control); group II (defect filled with GenOx (R)); group III (defect covered by GenDerm (R)); group IV (defect filled with GenOx (R) and covered by GenDerm (R)). Animals were killed at 30 or 90 days post-surgery. The specimens were embedded in paraffin, serially cut, and stained with hematoxylin and eosin for analysis under light microscopy. The formation of new bone in the cortical area of the defect was histomorphometrically evaluated.Results: All experimental groups demonstrated superior bone healing compared with the control group. However, group IV samples showed evidence of more advanced healing at both 30 and 90 days post-surgery as compared with the other experimental groups.Conclusions: The bovine organic bone graft GenOx (R) associated with GenDerm (R) this produced the best treatment results in the case of critical-size defects in rat tibia.
Resumo:
The aim of this study was to evaluate the periapical healing after the use of membrane, bone graft, and mineral trioxide aggregate (MTA) in apical surgery of dogs' teeth. Apical lesions were induced in 48 roots of 6 dogs after coronal access and pulpal removal. Apical surgery consisted of osteotomy with trephine bur for the standardization of the critical surgical cavities, followed by apicoectomy, curettage, preparation of the root-end cavities with the aid of the ultrasonic device, and retrofilling with MTA. The surgical sites were divided into: group 1-filled with blood; group 2-filled with blood and recovered with membrane; group 3-filled with bone graft; and group 4-filled with bone graft and recovered with membrane. The results showed that the inflammatory infiltrate, the periapical healing process, and the behavior of MTA was the same in all groups, including the mineralization stimulation. It was concluded that the use of membranes and bone graft materials isolated or associated in apical surgery did not alter the periapical healing process after the root-end filling with MTA. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 309-314)