1000 resultados para Ocean mining
Resumo:
The planktonic haptophyte Phaeocystis has been suggested to play a fundamental role in the global biogeochemical cycling of carbon and sulphur, but little is known about its global biomass distribution. We have collected global microscopy data of the genus Phaeocystis and converted abundance data to carbon biomass using species-specific carbon conversion factors. Microscopic counts of single-celled and colonial Phaeocystis were obtained both through the mining of online databases and by accepting direct submissions (both published and unpublished) from Phaeocystis specialists. We recorded abundance data from a total of 1595 depth-resolved stations sampled between 1955-2009. The quality-controlled dataset includes 5057 counts of individual Phaeocystis cells resolved to species level and information regarding life-stages from 3526 samples. 83% of stations were located in the Northern Hemisphere while 17% were located in the Southern Hemisphere. Most data were located in the latitude range of 50-70° N. While the seasonal distribution of Northern Hemisphere data was well-balanced, Southern Hemisphere data was biased towards summer months. Mean species- and form-specific cell diameters were determined from previously published studies. Cell diameters were used to calculate the cellular biovolume of Phaeocystis cells, assuming spherical geometry. Cell biomass was calculated using a carbon conversion factor for Prymnesiophytes (Menden-Deuer and Lessard, 2000). For colonies, the number of cells per colony was derived from the colony volume. Cell numbers were then converted to carbon concentrations. An estimation of colonial mucus carbon was included a posteriori, assuming a mean colony size for each species. Carbon content per cell ranged from 9 pg (single-celled Phaeocystis antarctica) to 29 pg (colonial Phaeocystis globosa). Non-zero Phaeocystis cell biomasses (without mucus carbon) range from 2.9 - 10?5 µg l-1 to 5.4 - 103 µg l-1, with a mean of 45.7 µg l-1 and a median of 3.0 µg l-1. Highest biomasses occur in the Southern Ocean below 70° S (up to 783.9 µg l-1), and in the North Atlantic around 50° N (up to 5.4 - 103 µg l-1).
Resumo:
A compilation of chemical analyses of Pacific Ocean nodules using an x-ray fluorescence technique. The equipment used was a General Electric XRD-5 with a tungsten tube. Lithium fluoride was used as the diffraction element in assaying for all elements above calcium in the atomic table and EDDT was used in conjunction with a helium path for all elements with an atomic number less than calcium. Flow counters were used in conjunction with a pulse height analyzer to eliminate x-ray lines of different but integral orders in gathering count data. The stability of the equipment was found to be excellent by the author. The equipment was calibrated by the use of standard ores made from pure oxide forms of the elements in the nodules and carefully mixed in proportion to the amounts of these elements generally found in the manganese nodules. Chemically analyzed standards of the nodules themselves were also used. As a final check, a known amount of the element in question was added to selected samples of the nodules and careful counts were taken on these samples before and after the addition of the extra amount of the element. The method involved the determination and subsequent use of absorption and activation factors for the lines of the various elements. All the absorption and activation factors were carefully determined using the standard ores. The chemically analyzed samples of the nodules by these methods yielded an accuracy to at least three significant figures.
Resumo:
This paper reviews the state of the art in processing and extraction of ocean floor manganese nodules. It briefly reviews the mining sites where the abundant rich nodules occur and also discusses the metal distribution in nodules in view of economical processing and extraction of these metal values. The paper discloses in a detailed manner the physical and chemical characteristics of nodules, including porosity, surface area, water content and the effect of temperature on crystal structure of major constituents of nodules. In the extraction aspect of nodules, the paper reviews two different extraction schemes revealed in the literature, namely hydrometallurgical treatment and pyrometallurgical treatment. The hydrometallurgical treatments include acid leaching, ammonia leaching, leaching with reducing agents and leaching after high temperature pre-treatments such as in sulfating rousting, while the pyrometallurgical processes include smelting, chlorination-vaporization and segregation. The paper also covers metal recovery processes from leach liquor. An economic survey of processing nodules has been made in terms of problems associated with metal-marketing, and impact of metal production from nodules on mineral industries.