790 resultados para Object-based Classification
Resumo:
Automatic generation of classification rules has been an increasingly popular technique in commercial applications such as Big Data analytics, rule based expert systems and decision making systems. However, a principal problem that arises with most methods for generation of classification rules is the overfit-ting of training data. When Big Data is dealt with, this may result in the generation of a large number of complex rules. This may not only increase computational cost but also lower the accuracy in predicting further unseen instances. This has led to the necessity of developing pruning methods for the simplification of rules. In addition, classification rules are used further to make predictions after the completion of their generation. As efficiency is concerned, it is expected to find the first rule that fires as soon as possible by searching through a rule set. Thus a suit-able structure is required to represent the rule set effectively. In this chapter, the authors introduce a unified framework for construction of rule based classification systems consisting of three operations on Big Data: rule generation, rule simplification and rule representation. The authors also review some existing methods and techniques used for each of the three operations and highlight their limitations. They introduce some novel methods and techniques developed by them recently. These methods and techniques are also discussed in comparison to existing ones with respect to efficient processing of Big Data.
Resumo:
Advances in hardware and software technologies allow to capture streaming data. The area of Data Stream Mining (DSM) is concerned with the analysis of these vast amounts of data as it is generated in real-time. Data stream classification is one of the most important DSM techniques allowing to classify previously unseen data instances. Different to traditional classifiers for static data, data stream classifiers need to adapt to concept changes (concept drift) in the stream in real-time in order to reflect the most recent concept in the data as accurately as possible. A recent addition to the data stream classifier toolbox is eRules which induces and updates a set of expressive rules that can easily be interpreted by humans. However, like most rule-based data stream classifiers, eRules exhibits a poor computational performance when confronted with continuous attributes. In this work, we propose an approach to deal with continuous data effectively and accurately in rule-based classifiers by using the Gaussian distribution as heuristic for building rule terms on continuous attributes. We show on the example of eRules that incorporating our method for continuous attributes indeed speeds up the real-time rule induction process while maintaining a similar level of accuracy compared with the original eRules classifier. We termed this new version of eRules with our approach G-eRules.
Resumo:
Background: Traumatic subdural hygroma (TSHy) is an accumulation of cerebrospinal fluid (CSF) in the subdural space after head injury. It appears to be relatively common, but its onset time and natural history are not well defined. Considered a benign epiphenomenon of trauma, the pathogenesis of TSHy is still unclear and many questions remain unanswered. This study adds to the information on TSHy, and proposes a classification based on pathogenesis.Methods: Thirty-four consecutive adult patients with TSHy were analyzed for clinical evolution and serial CT scan, during a period of several months. TSHy diagnosis was based on published CT scan criteria of hypodense subdural collection after trauma, without enhancement and neomembrane, with a minimum distance of 3 mm between the skull and brain. Ventricle size was analyzed by calculating the bicaudate index (BCI). For comparison, the BCI was measured from CT scan at three moments: admission, at time of TSHy diagnosis, and from last CT scan.Results: There were 34 patients, aged between 16 and 85 years (mean 40), half of them were below 40 years. Road traffic crashes were the main cause of head injury. The mean time for hygroma diagnosis was 9 days. Twenty-one patients (61.8%) underwent conservative treatment for TSHy and 13 (38.2%), surgical treatment. TSHy are early lesions and can be detected in the first 24 hours after trauma, usually as small subdural effusion (SSEff). Based on clinical and CT scan findings, we divided the 34 patients into 3 groups, (Ia and Ib) without evident mass effect and (II) with evident mass effect. Group Ia includes patients without ventricle dilation; Ib, patients with associated ventricle dilations.Conclusions: SSEff detected in the first 24 hours posttrauma in our series evolved into TSHy suggesting that this is an early lesion; all THSy were divided in three groups according to the pathophysiologic mechanism. These three groups probably represent a continuum of CSF absorption impairment. Group la represents what most authors consider a simple hygroma, with no impairment on CSF absorption. Group Ib represent the external hydrocephalus form with various degrees of CSF imbalance, and group II were the cases presenting marked mass effect.
Resumo:
Specification consortia and standardization bodies concentrate on e-Learning objects to en-sure reusability of content. Learning objects may be collected in a library and used for deriv-ing course offerings that are customized to the needs of different learning communities. How-ever, customization of courses is possible only if the logical dependencies between the learn-ing objects are known. Metadata for describing object relationships have been proposed in several e-Learning specifications. This paper discusses the customization potential of e-Learning objects but also the pitfalls that exist if content is customized inappropriately.
Resumo:
This paper proposes a new methodology for object based 2-D data fu- sion, with a multiscale character. This methodology is intended to be use in agriculture, specifically in the characterization of the water status of different crops, so as to have an appropriate water management at a farm-holding scale. As a first approach to its evaluation, vegetation cover vigor data has been integrated with texture data. For this purpose, NDVI maps have been calculated using a multispectral image and Lacunarity maps from the panchromatic image. Preliminary results show this methodology is viable in the integration and management of large volumes of data, which characterize the behavior of agricultural covers at farm-holding scale.
Resumo:
Validación de la cartografía generada del terreno a partir de una nuevo sistema de validación propuesto
Resumo:
Clasificación de una imagen de alta resolución "Quickbird" con la técnica de análisis de imágenes en base a objetos.
Resumo:
In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata theory is proposed and as a result we present a set of probabilistic classification rules with self-learning capability. The probabilities of the classification rules change dynamically guided by a supervised reinforcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied to the automatic recognition of digital images corresponding to visual landmarks for the autonomous navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy of the proposed classifier and its comparison with well-established pattern recognition methods is finally reported.
Resumo:
The scientific method is a methodological approach to the process of inquiry { in which empirically grounded theory of nature is constructed and verified [14]. It is a hard, exhaustive and dedicated multi-stage procedure that a researcher must perform to achieve valuable knowledge. Trying to help researchers during this process, a recommender system, intended as a researcher assistant, is designed to provide them useful tools and information for each stage of the procedure. A new similarity measure between research objects and a representational model, based on domain spaces, to handle them in dif ferent levels are created as well as a system to build them from OAI-PMH (and RSS) resources. It tries to represents a sound balance between scientific insight into individual scientific creative processes and technical implementation using innovative technologies in information extraction, document summarization and semantic analysis at a large scale.
Resumo:
Single photon emission with computed tomography (SPECT) hexamethylphenylethyleneamineoxime technetium-99 images were analyzed by an optimal interpolative neural network (OINN) algorithm to determine whether the network could discriminate among clinically diagnosed groups of elderly normal, Alzheimer disease (AD), and vascular dementia (VD) subjects. After initial image preprocessing and registration, image features were obtained that were representative of the mean regional tissue uptake. These features were extracted from a given image by averaging the intensities over various regions defined by suitable masks. After training, the network classified independent trials of patients whose clinical diagnoses conformed to published criteria for probable AD or probable/possible VD. For the SPECT data used in the current tests, the OINN agreement was 80 and 86% for probable AD and probable/possible VD, respectively. These results suggest that artificial neural network methods offer potential in diagnoses from brain images and possibly in other areas of scientific research where complex patterns of data may have scientifically meaningful groupings that are not easily identifiable by the researcher.