937 resultados para Oberflächennahe Geothermie, Wärmeleitfähigkeit, Thermal Response Test, Erdwärmesonde, Hydrogeologie
Resumo:
The study of the thermal behavior of complex packages as multichip modules (MCM¿s) is usually carried out by measuring the so-called thermal impedance response, that is: the transient temperature after a power step. From the analysis of this signal, the thermal frequency response can be estimated, and consequently, compact thermal models may be extracted. We present a method to obtain an estimate of the time constant distribution underlying the observed transient. The method is based on an iterative deconvolution that produces an approximation to the time constant spectrum while preserving a convenient convolution form. This method is applied to the obtained thermal response of a microstructure as analyzed by finite element method as well as to the measured thermal response of a transistor array integrated circuit (IC) in a SMD package.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
The ternary aluminium oxynitride (AlNxOy) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlNx and AlOy and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlNxOy thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlOy and AlNx systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N2 and/or O2) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group.
Resumo:
A suite of climate model experiments indicates that 20th Century increases in ocean heat content and sea-level ( via thermal expansion) were substantially reduced by the 1883 eruption of Krakatoa. The volcanically-induced cooling of the ocean surface is subducted into deeper ocean layers, where it persists for decades. Temporary reductions in ocean heat content associated with the comparable eruptions of El Chichon ( 1982) and Pinatubo ( 1991) were much shorter lived because they occurred relative to a non-stationary background of large, anthropogenically-forced ocean warming. Our results suggest that inclusion of the effects of Krakatoa ( and perhaps even earlier eruptions) is important for reliable simulation of 20th century ocean heat uptake and thermal expansion. Inter-model differences in the oceanic thermal response to Krakatoa are large and arise from differences in external forcing, model physics, and experimental design. Systematic experimentation is required to quantify the relative importance of these factors. The next generation of historical forcing experiments may require more careful treatment of pre-industrial volcanic aerosol loadings.
Resumo:
Resistance baselines were obtained for the first generation anticoagulant rodenticides chlorophacinone and diphacinone using laboratory, caesarian-derived Norway rats (Rattus norvegicus) as the susceptible strain and the blood clotting response test method. The ED99 estimates for a quantal response were: chlorophacinone, males 0.86 mg kg−1, females 1.03 mg kg−1; diphacinone, males 1.26 mg kg−1, females 1.60 mg kg−1. The dose-response data also showed that chlorophacinone was significantly (p<0.0001) more potent than diphacinone for both male and female rats, and that male rats were more susceptible than females to both compounds (p<0.002). The ED99 doses were then given to groups of five male and five female rats of the Welsh and Hampshire warfarin-resistant strains. Twenty-four hours later, prothrombin times were slightly elevated in both strains but all the animals were classified as resistant to the two compounds, indicating cross-resistance from warfarin to diphacinone and chlorophacinone. When rats of the two resistant strains were fed for six consecutive days on baits containing either diphacinone or chlorophacinone, many animals survived, indicating that their resistance might enable them to survive treatments with these compounds in the field.
Resumo:
Wear mechanisms and thermal history of two non-conforming sliding surfaces was investigated in laboratory. A micro-abrasion testing setup was used but the traditional rotative sphere method was substituted by a cylindrical surface of revolution which included seven sharp angles varying between 15o to 180o. The micro-abrasion tests lead to the investigation on the polyurethane response at different contact pressures. For these turned counterfaces with and without heat treatment. Normal load and sliding speeds were changed. The sliding distance was fixed at 5 km in each test. The room and contact temperatures were measured during the tests. The polyurethane was characterized using tensile testing, hardness Shore A measurement, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Thermomechanical Analyze (TMA). The Vickers micro-hardness of the steel was measured before and after the heat treatment and the metallographic characterization was also carried out. Worn surface of polyurethane was analysed using Scanning Electron Microscope (SEM) and EDS (Electron Diffraction Scanning) microanalyses. Single pass scratch testing in polyurethane using indenters with different contact angles was also carried out. The scar morphology of the wear, the wear mechanism and the thermal response were analyzed in order to correlate the conditions imposed by the pressure-velocity pair to the materials in contact. Eight different wear mechanisms were identified on the polyurethane surface. It was found correlation between the temperature variation and the wear scar morphology.
Resumo:
The thermal behavior of Cu-Al alloys with 17, 19 and 21 at.%Al was examined by differential thermal analysis (DTA), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), optical microscopy (OM) and scanning electron microscopy (SEM). The presence of the gamma phase (Al4Cu9) was clearly detected for the Cu-19 at.%Al alloy and caused the alpha (2) phase disordering process in two stages. The tendency to increase the alpha (2) dissolution precipitates with the increase in the Al content seems to be reverted for compositions at about 21 at.%Al and the heating/cooling ratio seems to influence the thermal response of this process. The presence of the endothermic peak corresponding to the beta (1)--> beta transformation depends on an incomplete beta decomposition reaction. The variation of the heating rate showed that the beta (1)-->(alpha+gamma (1)) decomposition is the dominant reaction for alloys containing 19 and 21 at.%Al.
Resumo:
STATEMENT OF PROBLEM: AuTi alloys with 1.6% to 1.7% (wt%) Ti provide sufficient bond strength to veneering ceramics, but the strength of entire metal-ceramic restorations fabricated from these alloys is not known. However, this information is important to assess the clinical performance of such materials. PURPOSE: This in vitro study evaluated the fracture strength and thermal shock resistance of metal-ceramic crowns with AuTi frameworks produced by milling or casting. MATERIAL AND METHODS: Frameworks of the alloy Au-1.7Ti-0.1Ir (wt%) (Esteticor Vision) were produced by milling or casting (test groups). A high-gold alloy (Esteticor Special) was used as the control. The frameworks were veneered with ceramic (VMK 95). Specimens (n=7) were loaded until fracture. Loads at failure (N) were recorded and the mean values statistically evaluated using 1-way analysis of variance and a post hoc Dunnett test (alpha=.05). To assess the crazing resistance of the veneering ceramic, 6 additional crowns of each group were subjected to a thermal shock test. Fractured surfaces were documented by scanning electron microscopy. Coefficients of thermal expansion of the materials used were measured (n=2) to assess the thermal compatibility between alloys and ceramic. RESULTS: The mean fracture strength of the crowns with machined AuTi frameworks (1294 +/- 236 N) was significantly lower (P=.012) than that of the cast AuTi frameworks (1680 +/- 150 N), but statistically not different than the high-gold alloy (1449 +/- 159 N). Bonding failure to the AuTi alloy predominantly occurred at the alloy-oxide interface. For the high-gold alloy, more ceramic residues were observed. In the thermal shock test, crowns with milled AuTi frameworks showed significantly higher thermal shock resistance compared to the other groups. The coefficients of thermal expansion (Esteticor Vision cast: 14.5 microm/m.K; Esteticor Vision milled: 14.3 microm/m.K; Esteticor Special cast: 13.7 microm/m.K) did not correlate with the results of the thermal shock test. CONCLUSION: The in vitro fracture strength of crowns with milled AuTi frameworks is lower than that obtained with cast AuTi frameworks, but comparable to those crowns produced with a high-gold alloy.
Resumo:
Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCO2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and PeCO2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO-3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperature-dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks
Resumo:
Existe una creciente necesidad de hacer el mejor uso del agua para regadío. Una alternativa eficiente consiste en la monitorización del contenido volumétrico de agua (θ), utilizando sensores de humedad. A pesar de existir una gran diversidad de sensores y tecnologías disponibles, actualmente ninguna de ellas permite obtener medidas distribuidas en perfiles verticales de un metro y en escalas laterales de 0.1-1,000 m. En este sentido, es necesario buscar tecnologías alternativas que sirvan de puente entre las medidas puntuales y las escalas intermedias. Esta tesis doctoral se basa en el uso de Fibra Óptica (FO) con sistema de medida de temperatura distribuida (DTS), una tecnología alternativa de reciente creación que ha levantado gran expectación en las últimas dos décadas. Específicamente utilizamos el método de fibra calentada, en inglés Actively Heated Fiber Optic (AHFO), en la cual los cables de Fibra Óptica se utilizan como sondas de calor mediante la aplicación de corriente eléctrica a través de la camisa de acero inoxidable, o de un conductor eléctrico simétricamente posicionado, envuelto, alrededor del haz de fibra óptica. El uso de fibra calentada se basa en la utilización de la teoría de los pulsos de calor, en inglés Heated Pulsed Theory (HPP), por la cual el conductor se aproxima a una fuente de calor lineal e infinitesimal que introduce calor en el suelo. Mediante el análisis del tiempo de ocurrencia y magnitud de la respuesta térmica ante un pulso de calor, es posible estimar algunas propiedades específicas del suelo, tales como el contenido de humedad, calor específico (C) y conductividad térmica. Estos parámetros pueden ser estimados utilizando un sensor de temperatura adyacente a la sonda de calor [método simple, en inglés single heated pulsed probes (SHPP)], ó a una distancia radial r [método doble, en inglés dual heated pulsed probes (DHPP)]. Esta tesis doctoral pretende probar la idoneidad de los sistemas de fibra óptica calentada para la aplicación de la teoría clásica de sondas calentadas. Para ello, se desarrollarán dos sistemas FO-DTS. El primero se sitúa en un campo agrícola de La Nava de Arévalo (Ávila, España), en el cual se aplica la teoría SHPP para estimar θ. El segundo sistema se desarrolla en laboratorio y emplea la teoría DHPP para medir tanto θ como C. La teoría SHPP puede ser implementada con fibra óptica calentada para obtener medidas distribuidas de θ, mediante la utilización de sistemas FO-DTS y el uso de curvas de calibración específicas para cada suelo. Sin embargo, la mayoría de aplicaciones AHFO se han desarrollado exclusivamente en laboratorio utilizando medios porosos homogéneos. En esta tesis se utiliza el programa Hydrus 2D/3D para definir tales curvas de calibración. El modelo propuesto es validado en un segmento de cable enterrado en una instalación de fibra óptica y es capaz de predecir la respuesta térmica del suelo en puntos concretos de la instalación una vez que las propiedades físicas y térmicas de éste son definidas. La exactitud de la metodología para predecir θ frente a medidas puntuales tomadas con sensores de humedad comerciales fue de 0.001 a 0.022 m3 m-3 La implementación de la teoría DHPP con AHFO para medir C y θ suponen una oportunidad sin precedentes para aplicaciones medioambientales. En esta tesis se emplean diferentes combinaciones de cables y fuentes emisoras de calor, que se colocan en paralelo y utilizan un rango variado de espaciamientos, todo ello en el laboratorio. La amplitud de la señal y el tiempo de llegada se han observado como funciones del calor específico del suelo. Medidas de C, utilizando esta metodología y ante un rango variado de contenidos de humedad, sugirieron la idoneidad del método, aunque también se observaron importantes errores en contenidos bajos de humedad de hasta un 22%. La mejora del método requerirá otros modelos más precisos que tengan en cuenta el diámetro del cable, así como la posible influencia térmica del mismo. ABSTRACT There is an increasing need to make the most efficient use of water for irrigation. A good approach to make irrigation as efficient as possible is to monitor soil water content (θ) using soil moisture sensors. Although, there is a broad range of different sensors and technologies, currently, none of them can practically and accurately provide vertical and lateral moisture profiles spanning 0-1 m depth and 0.1-1,000 m lateral scales. In this regard, further research to fulfill the intermediate scale and to bridge single-point measurement with the broaden scales is still needed. This dissertation is based on the use of Fiber Optics with Distributed Temperature Sensing (FO-DTS), a novel approach which has been receiving growing interest in the last two decades. Specifically, we employ the so called Actively Heated Fiber Optic (AHFO) method, in which FO cables are employed as heat probe conductors by applying electricity to the stainless steel armoring jacket or an added conductor symmetrically positioned (wrapped) about the FO cable. AHFO is based on the classic Heated Pulsed Theory (HPP) which usually employs a heat probe conductor that approximates to an infinite line heat source which injects heat into the soil. Observation of the timing and magnitude of the thermal response to the energy input provide enough information to derive certain specific soil thermal characteristics such as the soil heat capacity, soil thermal conductivity or soil water content. These parameters can be estimated by capturing the soil thermal response (using a thermal sensor) adjacent to the heat source (the heating and the thermal sources are mounted together in the so called single heated pulsed probe (SHPP)), or separated at a certain distance, r (dual heated pulsed method (DHPP) This dissertation aims to test the feasibility of heated fiber optics to implement the HPP theory. Specifically, we focus on measuring soil water content (θ) and soil heat capacity (C) by employing two types of FO-DTS systems. The first one is located in an agricultural field in La Nava de Arévalo (Ávila, Spain) and employ the SHPP theory to estimate θ. The second one is developed in the laboratory using the procedures described in the DHPP theory, and focuses on estimating both C and θ. The SHPP theory can be implemented with actively heated fiber optics (AHFO) to obtain distributed measurements of soil water content (θ) by using reported soil thermal responses in Distributed Temperature Sensing (DTS) and with a soil-specific calibration relationship. However, most reported AHFO applications have been calibrated under laboratory homogeneous soil conditions, while inexpensive efficient calibration procedures useful in heterogeneous soils are lacking. In this PhD thesis, we employ the Hydrus 2D/3D code to define these soil-specific calibration curves. The model is then validated at a selected FO transect of the DTS installation. The model was able to predict the soil thermal response at specific locations of the fiber optic cable once the surrounding soil hydraulic and thermal properties were known. Results using electromagnetic moisture sensors at the same specific locations demonstrate the feasibility of the model to detect θ within an accuracy of 0.001 to 0.022 m3 m-3. Implementation of the Dual Heated Pulsed Probe (DPHP) theory for measurement of volumetric heat capacity (C) and water content (θ) with Distributed Temperature Sensing (DTS) heated fiber optic (FO) systems presents an unprecedented opportunity for environmental monitoring. We test the method using different combinations of FO cables and heat sources at a range of spacings in a laboratory setting. The amplitude and phase-shift in the heat signal with distance was found to be a function of the soil volumetric heat capacity (referred, here, to as Cs). Estimations of Cs at a range of θ suggest feasibility via responsiveness to the changes in θ (we observed a linear relationship in all FO combinations), though observed bias with decreasing soil water contents (up to 22%) was also reported. Optimization will require further models to account for the finite radius and thermal influence of the FO cables, employed here as “needle probes”. Also, consideration of the range of soil conditions and cable spacing and jacket configurations, suggested here to be valuable subjects of further study and development.
Resumo:
Las personas que usan la silla de ruedas como su forma de movilidad prioritaria presentan una elevada incidencia (73%) de dolor de hombro debido al sobreuso y al movimiento repetitivo de la propulsión. Existen numerosos métodos de diagnóstico para la detección de las patologías del hombro, sin embargo la literatura reclama la necesidad de un test no invasivo y fiable, y sugiere la termografía como una técnica adecuada para evaluar el dolor articular. La termografía infrarroja (IRT) proporciona información acerca de los procesos fisiológicos a través del estudio de las distribuciones de la temperatura de la piel. Debido a la alta correlación entre ambos lados corporales, las asimetrías térmicas entre flancos contralaterales son una buena indicación de patologías o disfunciones físicas subyacentes. La fiabilidad de la IRT ha sido estudiada con anterioridad en sujetos sanos, pero nunca en usuarios de sillas de ruedas. Las características especiales de la población con discapacidad (problemas de sudoración y termorregulación, distribución sanguínea o medicación), hacen necesario estudiar los factores que afectan a la aplicación de la IRT en usuarios de sillas de ruedas. La bibliografía discrepa en cuanto a los beneficios o daños resultantes de la práctica de la actividad física en las lesiones de hombro por sobreuso en usuarios de sillas de ruedas. Recientes resultados apuntan a un aumento del riesgo de rotura del manguito rotador en personas con paraplejia que practican deportes con elevación del brazo por encima de la cabeza. Debido a esta falta de acuerdo en la literatura, surge la necesidad de analizar el perfil termográfico en usuarios de sillas de ruedas sedentarios y deportistas y su relación con el dolor de hombro. Hasta la fecha sólo se han publicado estudios termográficos durante el ejercicio en sujetos sanos. Un mayor entendimiento de la respuesta termográfica al ejercicio en silla de ruedas en relación al dolor de hombro clarificará su aparición y desarrollo y permitirá una apropiada intervención. El primer estudio demuestra que la fiabilidad de la IRT en usuarios de sillas de ruedas varía dependiendo de las zonas analizadas, y corrobora que la IRT es una técnica no invasiva, de no contacto, que permite medir la temperatura de la piel, y con la cual avanzar en la investigación en usuarios de sillas de ruedas. El segundo estudio proporciona un perfil de temperatura para usuarios de sillas de ruedas. Los sujetos no deportistas presentaron mayores asimetrías entre lados corporales que los sedentarios, y ambos obtuvieron superiores asimetrías que los sujetos sin discapacidad reportados en la literatura. Los no deportistas también presentaron resultados más elevados en el cuestionario de dolor de hombro. El área con mayores asimetrías térmicas fue hombro. En deportistas, algunas regiones de interés (ROIs) se relacionaron con el dolor de hombro. Estos resultados ayudan a entender el mapa térmico en usuarios de sillas de ruedas. El último estudio referente a la evaluación de la temperatura de la piel en usuarios de sillas de ruedas en ejercicio, reportó diferencias significativas entre la temperatura de la piel antes del test y 10 minutos después del test de propulsión de silla de ruedas, en 12 ROIs; y entre el post-test y 10 minutos después del test en la mayoría de las ROIs. Estas diferencias se vieron atenuadas cuando se compararon las asimetrías antes y después del test. La temperatura de la piel tendió a disminuir inmediatamente después completar el ejercicio, e incrementar significativamente 10 minutos después. El análisis de las asimetrías vs dolor de hombro reveló relaciones significativas negativas en 5 de las 26 ROIs. No se encontraron correlaciones significativas entre las variables de propulsión y el cuestionario de dolor de hombro. Todas las variables cinemáticas correlacionaron significativamente con las asimetrías en múltiples ROIs. Estos resultados indican que los deportistas en sillas de ruedas exhiben una capacidad similar de producir calor que los deportistas sin discapacidad; no obstante, su patrón térmico es más característico de ejercicios prolongados que de esfuerzos breves. Este trabajo contribuye al conocimiento de la termorregulación en usuarios de sillas de ruedas durante el ejercicio, y aporta información relevante para programas deportivos y de rehabilitación. ABSTRACT Individuals who use wheelchairs as their main means of mobility have a high incidence (73%) of shoulder pain (SP) owing to overuse and repetitive propulsion movement. There are numerous diagnostic methods for the detection of shoulder pathologies, however the literature claims that a noninvasive accurate test to properly assess shoulder pain would be necessary, and suggests thermography as a suitable technique for joint pain evaluation. Infrared thermography (IRT) provides information about physiological processes by studying the skin temperature (Tsk) distributions. Due to the high correlation of skin temperature between both sides of the body, thermal asymmetries between contralateral flanks are an indicator of underlying pathologies or physical dysfunctions. The reliability of infrared thermography has been studied in healthy subjects but there are no studies that have analyzed the reliability of IRT in wheelchair users (WCUs). The special characteristics of people with disabilities (sweating and thermoregulation problems, or blood distribution) make it necessary to study the factors affecting the application of IRT in WCUs. Discrepant reports exist on the benefits of, or damage resulting from, physical exercise and the relationship to shoulder overuse injuries in WCUs. Recent findings have found that overhead sports increase the risk of rotator cuff tears in wheelchair patients with paraplegia. Since there is no agreement in the literature, the thermographic profile of wheelchair athletes and nonathletes and its relation with shoulder pain should also be analysed. Infrared thermographic studies during exercise have been carried out only with able-bodied population at present. The understanding of the thermographic response to wheelchair exercise in relation to shoulder pain will offer an insight into the development of shoulder pain, which is necessary for appropriate interventions. The first study presented in this thesis demonstrates that the reliability of IRT in WCUs varies depending on the areas of the body that are analyzed. Moreover, it corroborates that IRT is a noninvasive and noncontact technique that allows the measurement of Tsk, which will allow for advances to be made in research concerned with WCUs. The second study provides a thermal profile of WCUs. Nonathletic subjects presented higher side-to-side skin temperature differences (ΔTsk) than athletes, and both had greater ΔTsk than the able-bodied results that have been published in the literature. Nonathletes also revealed larger Wheelchair Users Shoulder Pain Index (WUSPI) score than athletes. The shoulder region of interest (ROI) was the area with the highest ΔTsk of the regions measured. The analysis of the athletes’ Tsk showed that some ROIs are related to shoulder pain. These findings help to understand the thermal map in WCUs. Finally, the third study evaluated the thermal response of WCUs in exercise. There were significant differences in Tsk between the pre-test and the post-10 min in 12 ROIs, and between the post-test and the post-10 in most of the ROIs. These differences were attenuated when the ΔTsk was compared before and after exercise. Skin temperature tended to initially decrease immediately after the test, followed by a significant increase at 10 minutes after completing the exercise. The ΔTsk versus shoulder pain analysis yielded significant inverse relationships in 5 of the 26 ROIs. No significant correlations between propulsion variables and the results of the WUSPI questionnaire were found. All kinematic variables were significantly correlated with the temperature asymmetries in multiple ROIs. These results present indications that high performance wheelchair athletes exhibit similar capacity of heat production to able-bodied population; however, they presented a thermal pattern more characteristic of a prolonged exercise rather than brief exercise. This work contributes to improve the understanding about temperature changes in wheelchair athletes during exercise and provides implications to the sports and rehabilitation programs.
Resumo:
This thesis begins by providing a review of techniques for interpreting the thermal response at the earth's surface acquired using remote sensing technology. Historic limitations in the precision with which imagery acquired from airborne platforms can be geometrically corrected and co-registered has meant that relatively little work has been carried out examining the diurnal variation of surface temperature over wide regions. Although emerging remote sensing systems provide the potential to register temporal image data within satisfactory levels of accuracy, this technology is still not widely available and does not address the issue of historic data sets which cannot be rectified using conventional parametric approaches. In overcoming these problems, the second part of this thesis describes the development of an alternative approach for rectifying airborne line-scanned imagery. The underlying assumption that scan lines within the imagery are straight greatly reduces the number of ground control points required to describe the image geometry. Furthermore, the use of pattern matching procedures to identify geometric disparities between raw line-scanned imagery and corresponding aerial photography enables the correction procedure to be almost fully automated. By reconstructing the raw image data on a truly line-by-line basis, it is possible to register the airborne line-scanned imagery to the aerial photography with an average accuracy of better than one pixel. Providing corresponding aerial photography is available, this approach can be applied in the absence of platform altitude information allowing multi-temporal data sets to be corrected and registered.
Resumo:
The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.