990 resultados para OXYGEN-EVOLVING ELECTRODES
Resumo:
光合放氧研究近十年来已有重要进展,但在该领域仍有很多重要问题待研究。本论文工作主要是对光系统氧化侧与光合放氧密切相关的组分的结构和性能进行理论和模拟研究,工作可概括如下: (一)、放氧中心结构和性能的探索。 1、对放氧中心Mn202单元与配体组氨酸、H2O和Cl等结合方式的理论研究显示:(a)、组氨酸和H20分子均可能与Mn202平面垂直,彼此保持较大的距离,且结合在不同的Mn离子上;(b)、2个H2O分子可能结合在不同Mn202单元上。 2、对Mn簇核心骨架的理论研究显示有必要引入新的Ca、Cl结合方式,以防止因两个Mn202单元线性化而导致2个H2O分子结合位点远离。 (二)、次级电子给体Tyr_z和Tyr_D的结构与功能。 对次级电子给体Tyr_z和Tyr_D进行精确量子化学研究显示:(a)、在中性条件下,Tyr_D和Tyr_z均只与组氨酸通过氢键作用;(b)、当失去电子后,结构发生明显变化,导致正电荷主要集中在组氨酸上,自由基主要集中在Tyr上;(c)、第三组分(H_20分子或羧基等)的引入使中性体系不容易给出电子;(d)、结合最新文献报导,推测Tyr_D~+和Tyr_z~+除与组氨酸作用外还可能分别与水和羧基作用。 (三)、原初电子给体的理论和模拟研究。 1、对紫细菌原初电子给体P_(870)的理论研究显示:(a)、双分子结构比单分子结构稳定;(b)、电荷分离之后,原初电子给体原有的空间结构不再是稳定的构型,它会向能量和化学活性均更低的构型转变。在光合细菌的原初电子给体P870中,这种转变可通过C3位的乙酰基旋转使其氧原子与另一个细菌叶绿素分子的镁原子相互作用使P870+•的总能量和化学活性明显降低。推测这种构型转变对于防止原初反应过程中的电荷重组、维持光能的高效转化有重要意义。提出了原初反应过程中结构动态变化的新观点,利用这一观点可对光合细菌原初反应动力学研究所观测到的慢过程及蛋白质微环境对原初电子给体和原初反应都有重要影响等实验现象给予较好的解释。 2、对光系统II原初电子给体P680的结构进行理论探讨,提出了两个叶绿素a分子平面间夹角为50.0±2.5°时能量最低的夹角模型。 3、采用N-甲基咪唑(C4H6N2)模拟生物体内的组氨酸,通过观测CCL4中的Chla与C4H6N2反应的吸收、CD和MCD光谱得到以下结论:(a)、在纯CCL4中,每个Chla处于5配位状态,Chla形成不对称的双聚体,彼此之间存在较强的偶合作用。提出两个Chla通过不等价的2个Mg-O配位键(O分别来自于C131位的酮基和C17位酯基的C=O)连接为紧密双体结构;(b)、当C4H6N2/Chla = 0.5和1时,其吸收、CD和MCD光谱均发生明显变化,两个Chla之间的偶合作用明显减弱,但此时仍为双聚体。推测C4H6N2首先取代原紧密双体结构中Mg-O酯键,进而取代Mg-O酮键,最后两个Chla分子通过两个Mg…O弱相互作用连接为松弛的双体结构,该模型与理论获得的P_(680)的结构相似。 在上述研究的基础上,提出了包括放氧中心外围配体和TyrZ在内的放氧中心结构新模型。在新结构模型中,2个H2O分子不对称地结合于“C”形结构开口端两个低价的Mn1II和Mn4III上,并保持较大距离;两个组氨酸的咪唑环通过N原子与两个高价的Mn2IV、Mn3IV结合;Cl结合于MB4TM,并与Ca相连;Ca通过O桥和COO-相连使两个Mn202单元保持特定空间构型。TyrZ通过组氨酸(D1-His190)与Mn簇作用。此外,新模型尝试着在O桥上引入质子。放氧中心结构及其邻近环境(包括TyrZ和TyrD)整体处于中性状态。 同时还提出了新的放氧机理,认为电子和质子的释放非同步进行,并首次明确提出两个水分子的不对称氧化和结构动态变化等观点。认为Ca在维持放氧中心的结构方面担负重要作用,C1与Mn离子之间的亲核作用变化是放氧中心结构变化的关键。
Resumo:
光合水氧化是地球上最重要的生化过程之一。这个过程是在位于类囊体囊腔侧的放氧复合物中完成的。光系统II中的锰簇催化中心在四个连续的氧化还原反应作用下将水裂解为四个质子和氧气。水氧化的催化中心含有四个锰、一个钙离子、一至两个氯离子和一个具氧化还原活性的YZ(D1-Y161)。在光系统II的功能性组装过程中,氧合催化中心的形成是在一个被称作光组装的作用下完成的。光组装是无机锰、钙、氯离子与光系统II蛋白结合并在光驱动下氧化形成功能性放氧中心的过程。到目前为止,放氧复合物(OEC)的结构及水氧化的机理仍不清楚,光组装的研究工作对于阐明放氧复合物的结构与功能具有重要的理论和实际意义。 本论文研究了一系列具有不同配位环璄的锰化合物与去锰的PSII的光组装过程, 同时研究了稀土离子LaCl3和TbCl3及重金属离子Co2+和Ni2+对PSII 放氧活性及光组装的影响。主要结果如下: 1. 选择了咪唑氮配位的锰化合物和非咪唑氮配位的锰化合物与去锰的PSII 颗粒进行重组, 发现化合物中锰的配位结构与其恢复电子传递能力和放氧活性之间有一定关系。 研究结果表明,锰中心为锰-咪唑氮连接的化合物能够有效地恢复去锰PSII的电子传递能力和放氧活性;而非咪唑氮配位的锰化合物恢复电子传递和放氧活性的能力都相应较低甚至没有,由此推测,咪唑氮为放氧中心锰簇的一个配体。 2. 选择了两个不同价态的二核锰化合物和一个带氧桥的三核锰化合物与去锰的PSII 颗粒进行重组。 研究结果表明,三核锰化合物表现出比另外两个二核锰化合物更强的恢复放氧活性的能力,但其作为电子供体的能力比另外两个化合物要差。由此可推测,影响锰化合物恢复电子传递和放氧活性效率的因素是不同的。另外, 三核锰化合物在重组过程中对CaCl2非常敏感,我们推测锰化合物中的羧基与Ca2+之间存在相互作用,而这种作用有助于锰的配位进而促进光组装。三个化合物重组放氧复合物能力的大小顺序为:Mn3(III)锰化合物>Mn(III)Mn(III)锰化合物> Mn(III)Mn(IV)锰化合物。 3. 研究了LaCl3、 TbCl3 对光系统II放氧复合物光组装的影响。研究表明,在光组装过程中,两种稀土离子La3+和Tb3+对光系统II的光组装有很强的抑制作用,这种作用很大程度上依赖于Ca2+的存在,两种稀土离子在Ca2+结合位点是一个混合型竞争抑制剂。 另外,在10 mmol/L Ca2+存在时,抑制50%的光组装活性所需的稀土离子浓度比抑制50%功能性PSII的放氧活性所需的稀土离子浓度小约10倍,这对理解稀土离子对光合作用的影响具有重要的理论意义。 4.本文研究了Ni2+和Co2+两种金属离子对光系统II膜蛋白复合体结构与功能的影响。结果表明,毫摩尔级Ni2+和Co2+可以使完整的光系统II和去除17 kDa、23 kDa外周蛋白的光系统II的放氧活性被一定程度地抑制,而且对后者的抑制作用更强,在上述两种情况下,CaCl2可使抑制作用减轻。两种金属离子对给体侧的完整性有一定影响:5 mmol/L金属离子存在的时,可使17 kDa蛋白解离,10 mmol/L的金属离子存在时可使17 kDa、 23 kDa蛋白解离。两种金属离子在光组装过程中对Mn、Ca的组装无明显的影响。
Resumo:
本论文研究了一系列具有不同配位环璄的锰化合物与去锰的PSII的光组装过程,得到了以下主要结果: 1. 分别对两组二核锰化合物与去锰的PSII 颗粒进行了重组研究。第一组的两个二核锰化合物中,锰原子具有相同的外围配体、氧化还原状态,但是不同的连接方式;而第二组的两个二核锰化合物中,锰原子具有相同的连接方式、氧化还原状态,但是不同的外围配体。实验结果表明,锰化合物中两个锰原子之间的连接方式及外围配体的不同都可以导致锰簇光组装效率的不同,但这两种因素引起的光组装效率的差异比锰原子的氧化还原状态引起的差别要小的多。因此我们推断,锰原子的氧化还原状态是影响光组装效率最重要的因素之一。 2. 选择了三个四核锰化合物与去锰PSII 颗粒进行重组,测定其电子传递与放氧活性。研究结果表明,具有较少配体和较小分子的两个化合物H568和WM01具有较高的重组活性,而另一个化合物Z342的活性较低。这说明化合物配体的数目以及分子的大小影响了光组装效率。另外, 化合物H568和WM01在重组过程中对CaCl2也比Z342更敏感,推测这可能是因为这两个锰化合物中有更多的的羧基可以与Ca2+发生相互作用,而这种作用有助于锰的配位,进而促进光组装。 3. 研究了Mn/Ca的簇合物与去锰的PSII 颗粒的光重组, 研究发现,尽管化合物wwg-27本身就含有Ca的成分,但它在与光系统II的光组装过程中仍然表现为外源Ca需要的趋势,而且这一化合物也表现了比MnCl2更高的光组装效率。 4. 研究了MnCl2与去锰PSII 颗粒的重组过程中,组氨酸和酪氨酸的存在对光组装效率的影响。 研究结果表明,加入一定量的组氨酸和酪氨酸均可以明显的提高样品的放氧活性,并且这两种氨基酸对光组装效率的影响均与pH值有关。
Resumo:
本文主要研究了一系列具有不同配位环璄的锰化合物与去锰PSII颗粒的光组装过程;其次,应用太赫兹时域光谱技术对锰稳定蛋白PsbO蛋白的结构与功能进行了研究。主要结果如下: 1. 选择了一组单核、锰中心原子为二价、与羧基氧和氮配位的锰化合物与去锰光系统II颗粒进行了重组研究。研究结果表明,锰化合物中锰原子和氮原子的配位连接是影响电子传递恢复和放氧复合物重组效率的重要因素。锰化合物中锰原子与氮原子的配位,促进了锰原子与PSII脱辅基蛋白上的氨基酸残基进行光配位。33 kDa蛋白的加入显著提高光组装放氧活性,33 kDa蛋白的柔性构象有助于锰簇接受体积大的分子,并提高其稳定性,从而促进PSII反应中心锰簇的光组装。 2. 选择了一组拥有相同配体、锰中心原子价态不同的锰化合物与去锰PSII 颗粒进行重组。三个锰价态为+2,+3,+4价的锰化合物均表现出较高的恢复电子传递和放氧活性的能力,但锰与配体氧原子共价连接的锰化合物恢复电子传递和放氧活性的能力的很差,Mn-O连接阻碍WOC的重组。研究结果表明,锰化合物恢复电子传递活性和放氧活性的能力也受其中锰原子的价态及其它结构因素的影响。锰价态较低的锰化合物比锰价态较高的锰化合物更容易向PSII反应中心提供电子。锰化合物恢复电子传递和放氧活性的因素是不同的。锰化合物作为有效电子供体的效率与其螯合环数成反比,但配体的大小不是影响锰化合物重组放氧活性的主要因素。 3. 应用太赫兹时域光谱技术结合荧光光谱技术,研究了锰稳定蛋白PsbO在与金属离子作用及单个氨基酸被修饰后其构象变化和低频振动模的变化。实验结果显示,该蛋白上唯一的色氨酸对整个蛋白构象至关重要,它的改变引起整个蛋白分子低频振动模发生明显改变。此外,太赫兹时域光谱结果显示,PsbO可能含有钙结合位点。太赫兹时域光谱技术在研究蛋白构象变化,尤其是金属离子诱导的构象变化方面是相当灵敏的。
Resumo:
PS I, PS II and light-harvesting complexes (LHC) in oxygen evolving photosynthetic organisms were reviewed. These organisms include cyanobacteria, red algae, brown algae, diatoms, chrysophytes, dinophytes, xanthophytes, crypophytes, green algae and green plants. The diversity of pigment-protein complexes that fuel the conversion of radiant energy to chemical bond energy was highlighted, and the evolutionary relationships among the LHC structural polypeptides and the characteristics of the fluorescence emission of PS I at 77 K was discussed.
Resumo:
Higher plants have evolved a well-conserved set of photoprotective mechanisms, collectively designated Non-Photochemical Quenching of chlorophyll fluorescence (qN), to deal with the inhibitory absorption of excess light energy by the photosystems. Their main contribution originates from safe thermal deactivation of excited states promoted by a highly-energized thylakoid membrane, detected via lumen acidification. The precise origins of this energy- or LlpH-dependent quenching (qE), arising from either decreased energy transfer efficiency in PSII antennae (~ Young & Frank, 1996; Gilmore & Yamamoto, 1992; Ruban et aI., 1992), from alternative electron transfer pathways in PSII reaction centres (~ Schreiber & Neubauer, 1990; Thompson &Brudvig, 1988; Klimov et aI., 1977), or from both (Wagner et aI., 1996; Walters & Horton, 1993), are a source of considerable controversy. In this study, the origins of qE were investigated in spinach thylakoids using a combination of fluorescence spectroscopic techniques: Pulse Amplitude Modulated (PAM) fluorimetry, pump-probe fluorimetry for the measurement of PSII absorption crosssections, and picosecond fluorescence decay curves fit to a kinetic model for PSII. Quenching by qE (,..,600/0 of maximal fluorescence, Fm) was light-induced in circulating samples and the resulting pH gradient maintained during a dark delay by the lumenacidifying capabilities of thylakoid membrane H+ ATPases. Results for qE were compared to those for the addition of a known antenna quencher, 5-hydroxy-1,4naphthoquinone (5-0H-NQ), titrated to achieve the same degree of Fm quenching as for qE. Quenching of the minimal fluorescence yield, F0' was clear (8 to 130/0) during formation of qE, indicative of classical antenna quenching (Butler, 1984), although the degree was significantly less than that achieved by addition of 5-0H-NQ. Although qE induction resulted in an overall increase in absorption cross-section, unlike the decrease expected for antenna quenchers like the quinone, a larger increase in crosssection was observed when qE induction was attempted in thylakoids with collapsed pH gradients (uncoupled by nigericin), in the absence of xanthophyll cycle operation (inhibited by DTT), or in the absence of quenching (LlpH not maintained in the dark due to omission of ATP). Fluorescence decay curves exhibited a similar disparity between qE-quenched and 5-0H-NQ-quenched thylakoids, although both sets showed accelerated kinetics in the fastest decay components at both F0 and Fm. In addition, the kinetics of dark-adapted thylakoids were nearly identical to those in qEquenched samples at F0' both accelerated in comparison with thylakoids in which the redox poise of the Oxygen-Evolving Complex was randomized by exposure to low levels of background light (which allowed appropriate comparison with F0 yields from quenched samples). When modelled with the Reversible Radical Pair model for PSII (Schatz et aI., 1988), quinone quenching could be sufficiently described by increasing only the rate constant for decay in the antenna (as in Vasil'ev et aI., 1998), whereas modelling of data from qE-quenched thylakoids required changes in both the antenna rate constant and in rate constants for the reaction centre. The clear differences between qE and 5-0H-NQ quenching demonstrated that qE could not have its origins in the antenna alone, but is rather accompanied by reaction centre quenching. Defined mechanisms of reaction centre quenching are discussed, also in relation to the observed post-quenching depression in Fm associated with photoinhibition.
Towards reverse engineering of Photosystem II: Synergistic Computational and Experimental Approaches
Resumo:
ABSTRACT Photosystem II (PSII) of oxygenic photosynthesis has the unique ability to photochemically oxidize water, extracting electrons from water to result in the evolution of oxygen gas while depositing these electrons to the rest of the photosynthetic machinery which in turn reduces CO2 to carbohydrate molecules acting as fuel for the cell. Unfortunately, native PSII is unstable and not suitable to be used in industrial applications. Consequently, there is a need to reverse-engineer the water oxidation photochemical reactions of PSII using solution-stable proteins. But what does it take to reverse-engineer PSII’s reactions? PSII has the pigment with the highest oxidation potential in nature known as P680. The high oxidation of P680 is in fact the driving force for water oxidation. P680 is made up of a chlorophyll a dimer embedded inside the relatively hydrophobic transmembrane environment of PSII. In this thesis, the electrostatic factors contributing to the high oxidation potential of P680 are described. PSII oxidizes water in a specialized metal cluster known as the Oxygen Evolving Complex (OEC). The pathways that water can take to enter the relatively hydrophobic region of PSII are described as well. A previous attempt to reverse engineer PSII’s reactions using the protein scaffold of E. coli’s Bacterioferritin (BFR) existed. The oxidation potential of the pigment used for the BFR ‘reaction centre’ was measured and the protein effects calculated in a similar fashion to how P680 potentials were calculated in PSII. The BFR-RC’s pigment oxidation potential was found to be 0.57 V, too low to oxidize water or tyrosine like PSII. We suggest that the observed tyrosine oxidation in BRF-RC could be driven by the ZnCe6 di-cation. In order to increase the efficiency of iii tyrosine oxidation, and ultimately oxidize water, the first potential of ZnCe6 would have to attain a value in excess of 0.8 V. The results were used to develop a second generation of BFR-RC using a high oxidation pigment. The hypervalent phosphorous porphyrin forms a radical pair that can be observed using Transient Electron Paramagnetic Resonance (TR-EPR). Finally, the results from this thesis are discussed in light of the development of solar fuel producing systems.
Resumo:
Experimental Extended X-ray Absorption Fine Structure (EXAFS) spectra carry information about the chemical structure of metal protein complexes. However, pre- dicting the structure of such complexes from EXAFS spectra is not a simple task. Currently methods such as Monte Carlo optimization or simulated annealing are used in structure refinement of EXAFS. These methods have proven somewhat successful in structure refinement but have not been successful in finding the global minima. Multiple population based algorithms, including a genetic algorithm, a restarting ge- netic algorithm, differential evolution, and particle swarm optimization, are studied for their effectiveness in structure refinement of EXAFS. The oxygen-evolving com- plex in S1 is used as a benchmark for comparing the algorithms. These algorithms were successful in finding new atomic structures that produced improved calculated EXAFS spectra over atomic structures previously found.
Resumo:
The genus Saccharum belongs to Poaceae family. Sugarcane has become important monocultures in Brazil due to their products: ethanol and sugar. The production may change between different regions from Brazil. This difference is related to soil, climatic conditions and temperature that promotes oxidative stress that may induce an early flowering. The aim of this work was to identify the effects of oxidative stress. In order to analyse this, sugarcane plants were submitted to oxidative stress using hydrogen peroxide. After this treatment, the oxidative stress were analyzed Then, the plant responses were analyzed under different approaches, using morphophysiological, biochemical and molecular tools. Thus, sugarcane plants were grown under controlled conditions and until two months they were subjected first to a hydroponics condition for 24 hours in order to acclimation. After this period, these plants were submitted to oxidative stresse using 0 mM, 10 mM, 20 mM and 30 mM hydrogen peroxide during 8 hours. The histomorphometric analysis allowed us to verify that both root and leaf tissues had a structural changes as it was observed by the increased in cell volume, lignin accumulation in cell walls. Besides, this observation suggested that there was a change in redox balance. Also, it was analyzed the activity of the SOD, CAT and APX enzymes. It was observed an increase in the SOD activity in roots and it was also observed a lipid peroxidation in leaves and roots. Then, in order to identify proteins that were differently expressed in this conditions it was used the proteomic tool either by bidimensional gel or by direct sequencing using the Q-TOF EZI. The results obtained with this approach identified more than 3.000 proteins with the score ranging from 100-5000 ions. Some of the proteins identified were: light Harvesting; oxygenevolving; Thioredoxin; Ftsh-like protein Pftf precusor; Luminal-binding protein; 2 cys peroxiredoxin e Lipoxygenase. All these proteins are involved in oxidative stress response, photsynthetic pathways, and some were classified hypothetical proteins and/or unknown (30% of total). Thus, our data allows us to propose that this treatment induced an oxidative stress and the plant in response changed its physiological process, it made changes in tissue, changed the redox response in order to survival to this new condition
Resumo:
Burrow ventilation of benthic infauna generates water currents that irrigate the interstices of the sediments surrounding the burrow walls. Such activities have associated effects on biogeochemical processes affecting ultimately important ecosystem processes. In this study, the ventilation and irrigation behavior of Marenzelleria viridis, an invasive polychaete species in Europe, was analyzed using different approaches. M. viridis showed to perform two types of ventilation: (1) muscular pumping of water out of the burrow and (2) cilia pumping of water into the burrow. Flowmeter measurements presented muscular pumping in time averaged rates of 0.15 ml min(-1). Oxygen needle electrodes positioned above the burrow openings revealed that muscular undulation of the worm body pumps anoxic water out of the burrow. On the other hand, microscope observations of the animal showed that ventilation of oxygen-rich water in the burrow occurs by ciliary action. The volume of water irrigated by M. viridis appears to vary linearly within the first 24 h incubation, with rates ranging from 0.003 to 0.01 ml min(-1). From those rates we could estimate that the time averaged rate of cilia ventilation should be about 0.16 ml min(-1). Since the cilia pumping into the burrow occurs in periods of 24 +/- 12 min and at 50-70% of the measured time, considerable amounts of water from deeper sediments may percolate upwards to the sediment surface. This water is rich in reduced compounds and nutrients and may have important associated ecological implications in the ecosystem (e.g. affecting redox conditions, organic matter degradation, benthic recruitment and primary production). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The main aims of my PhD research work have been the investigation of the redox, photophysical and electronic properties of carbon nanotubes (CNT) and their possible uses as functional substrates for the (electro)catalytic production of oxygen and as molecular connectors for Quantum-dot Molecular Automata. While for CNT many and diverse applications in electronics, in sensors and biosensors field, as a structural reinforcing in composite materials have long been proposed, the study of their properties as individual species has been for long a challenging task. CNT are in fact virtually insoluble in any solvent and, for years, most of the studies has been carried out on bulk samples (bundles). In Chapter 2 an appropriate description of carbon nanotubes is reported, about their production methods and the functionalization strategies for their solubilization. In Chapter 3 an extensive voltammetric and vis-NIR spectroelectrochemical investigation of true solutions of unfunctionalized individual single wall CNT (SWNT) is reported that permitted to determine for the first time the standard electrochemical potentials of reduction and oxidation as a function of the tube diameter of a large number of semiconducting SWNTs. We also established the Fermi energy and the exciton binding energy for individual tubes in solution and, from the linear correlation found between the potentials and the optical transition energies, one to calculate the redox potentials of SWNTs that are insufficiently abundant or absent in the samples. In Chapter 4 we report on very efficient and stable nano-structured, oxygen-evolving anodes (OEA) that were obtained by the assembly of an oxygen evolving polyoxometalate cluster, (a totally inorganic ruthenium catalyst) with a conducting bed of multiwalled carbon nanotubes (MWCNT). Here, MWCNT were effectively used as carrier of the polyoxometallate for the electrocatalytic production of oxygen and turned out to greatly increase both the efficiency and stability of the device avoiding the release of the catalysts. Our bioinspired electrode addresses the major challenge of artificial photosynthesis, i.e. efficient water oxidation, taking us closer to when we might power the planet with carbon-free fuels. In Chapter 5 a study on surface-active chiral bis-ferrocenes conveniently designed in order to act as prototypical units for molecular computing devices is reported. Preliminary electrochemical studies in liquid environment demonstrated the capability of such molecules to enter three indistinguishable oxidation states. Side chains introduction allowed to organize them in the form of self-assembled monolayers (SAM) onto a surface and to study the molecular and redox properties on solid substrates. Electrochemical studies on SAMs of these molecules confirmed their attitude to undergo fast (Nernstian) electron transfer processes generating, in the positive potential region, either the full oxidized Fc+-Fc+ or the partly oxidized Fc+-Fc species. Finally, in Chapter 6 we report on a preliminary electrochemical study of graphene solutions prepared according to an original procedure recently described in the literature. Graphene is the newly-born of carbon nanomaterials and is certainly bound to be among the most promising materials for the next nanoelectronic generation.
Resumo:
Im Rahmen dieser Arbeit wurden zweikernige Modellkomplexe zur Untersuchung der Radikal-Metallwechselwirkung innerhalb des wasseroxidierenden Zentrums des Photo¬systems II synthetisiert und eine magneto-strukturelle Korrelation dieser Komplexe erstellt. Als Liganden wurden diverse sechs- bis siebenzähnige Chelatliganden verwendet, welche über zwei Koordinationstaschen und eine verbrückende Phenolatgruppe verfügen. Zwei daran gebundene Manganionen liegen in einer wohl definierten Umgebung nicht koordinativ gesättigt vor. An die freien Koordinationsstellen können weitere ein bis zwei Brückenliganden binden, bei denen es sich in dieser Arbeit hauptsächlich um Carboxylate handelt. Durch die Verwendung eines diamagnetischen Brückenliganden konnte die magnetische Spin-Spin-Austauschwechselwirkung zwischen den spintragenden Manganionen über die verbrücken¬de Phenolatgruppe bestimmt werden. Komplexe, welche über Manganionen in den gleichen Oxidationsstufen, aber über unterschiedliche Carboxylatbrückenliganden verfügen, weisen ähnliche magnetische Austauschwechselwirkungen zwischen den Metallzentren auf. Diese Beobachtung konnte durch eine strukturelle Ähnlichkeit dieser Komplexe erklärt werden. Mittels Aufsummieren der Bindungslängen der verbrückenden Phenolateinheit zu beiden Zentralionen kann innerhalb dieser Komplexe jeweils die Länge des Wechselwirkungspfades erhalten werden, welcher die magnetische Austauschwechselwirkung maßgeblich beein¬flusst. Je länger der Wechselwirkungspfad ist, desto kleiner ist die Austausch¬wechsel¬wirkung. Durch Austausch der diamagnetischen Carboxylate durch paramagnetische benzoat¬substituierte Nitronyl Nitroxid Radikale wurden den Komplexen ein bis zwei weitere Spinzentren hinzugefügt, welche mit den Spins der Zentralionen wechselwirken können. Simulationen der magnetischen Suszeptibilitätsmessungen liefern Werte für die magneti¬schen Austausch¬wechselwirkungen zwischen den Nitronyl Nitroxid Radikalen und den Manganionen, die in allen Fällen schwach ferromagnetisch zwischen 0 und 4,7 cm-1 sind. In einer Auftragung dieser Austauschwechselwirkungen gegen die Mangan-Carboxylat-Bindungs¬längen von strukturell charakterisierten äquivalenten acetatverbrückten Komplexen, kann eine lineare Abhängigkeit gezeigt werden.
Resumo:
The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His 6 -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1 D299A non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death.
Resumo:
To assess the availability of Ca2+ in the lumen of the thylakoid membrane that is required to support the assembly of the oxygen-evolving complex of photosystem II, we have investigated the mechanism of 45Ca2+ transport into the lumen of pea (Pisum sativum) thylakoid membranes using silicone-oil centrifugation. Trans-thylakoid Ca2+ transport is dependent on light or, in the dark, on exogenously added ATP. Both light and ATP hydrolysis are coupled to Ca2+ transport through the formation of a transthylakoid pH gradient. The H+-transporting ionophores nigericin/K+ and carbonyl cyanide 3-chlorophenylhydrazone inhibit the transport of Ca2+. Thylakoid membranes are capable of accumulating up to 30 nmol Ca2+ mg−1 chlorophyll from external concentrations of 15 μm over the course of a 15-min reaction. These results are consistent with the presence of an active Ca2+/H+ antiport in the thylakoid membrane. Ca2+ transport across the thylakoid membrane has significant implications for chloroplast and plant Ca2+ homeostasis. We propose a model of chloroplast Ca2+ regulation whereby the activity of the Ca2+/H+ antiporter facilitates the light-dependent uptake of Ca2+ by chloroplasts and reduces stromal Ca2+ levels.
Resumo:
The oxides of cobalt have recently been shown to be highly effective electrocatalysts for the oxygen evolution reaction (OER) under alkaline conditions. In general species such as Co3O4 and CoOOH have been investigated that often require an elevated temperature step during their synthesis to create crystalline materials. In this work we investigate the rapid and direct electrochemical formation of amorphous nanostructured Co(OH)2 on gold electrodes under room temperture conditions which is a highly active precursor for the OER. During the OER some conversion to crystalline Co3O4 occurs at the surface, but the bulk of the material remains amorphous. It is found that the underlying gold electrode is crucial to the materials enhanced performance and provides higher current density than can be achieved using carbon, palladium or copper support electrodes. This catalyst exhibits excellent activity with a current density of 10 mA cm-2 at an overpotential of 360 mV with a high turnover frequency of 2.1 s-1 in 1 M NaOH. A Tafel slope of 56 mV dec-1 at low overpotentials and a slope of 122 mV dec-1 at high overpotentials is consistent with the dual barrier model for the electrocatalytic evolution of oxygen. Significantly, the catalyst maintains excellent activity for up to 24 hr of continuous operation and this approach offers a facile way to create a highly effective and stable material.