983 resultados para OXIDASE ACTIVITY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aldehyde oxidase (AO; EC 1.2.3.1) activity was measured in seedlings of wild type or an auxin-overproducing mutant, superroot1 (sur1), of Arabidopsis thaliana. Activity staining for AO after native polyacrylamide gel electrophoresis separation of seedling extracts revealed that there were three major bands with AO activity (AO1–3) in wild-type and mutant seedlings. One of them (AO1) had a higher substrate preference for indole-3-aldehyde. This AO activity was significantly higher in sur1 mutant seedlings than in the wild type. The difference in activity was most apparent 7 d after germination, the same time required for the appearance of the remarkable sur1 phenotype, which includes epinastic cotyledons, elongated hypocotyls, and enhanced root development. Higher activity was observed in the root and hypocotyl region of the mutant seedlings. We also assayed the indole-3-acetaldehyde oxidase activity in extracts by high-performance liquid chromatography detection of indole-3-acetic acid (IAA). The activity was about 5 times higher in the extract of the sur1 seedlings, indicating that AO1 also has a substrate preference for abscisic aldehyde. Treatment of the wild-type seedlings with picloram or IAA caused no significant increase in AO1 activity. This result suggested that the higher activity of AO1 in sur1 mutant seedlings was not induced by IAA accumulation and, thus, strongly supports the possible role of AO1 in IAA biosynthesis in Arabidopsis seedlings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Treatment of N. crassa cultures with cycloheximide followed by washing and incubation in drug-free fresh medium results in a rapid decline in cytochrome oxidase activity. This is associated with the degradation of higher molecular weight subunits of cytochrome oxidase under these conditions. The protease activity associated with the mitochondrial preparation decreases during cycloheximide treatment and rapidly returns to normal levels on subsequent washing and transfer to drug-free fresh medium. It is suggested that the steady-state level of cytochrome oxidase is governed by a rapidly turning over cytoplasmically synthesized mitochondrial protease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An enzyme system from Datura innoxia roots oxidizing formylphenylacetic acid ethyl ester was purified 38-fold by conventional methods such as (NH4)2SO4 fractionation, negative adsorption on alumina Cy gel and chromatography on DEAE-cellulose. The purified enzyme was shown to catalyse the stoicheiometric oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid, utilizing molecular O2. Substrate analogues such as phenylacetaldehyde and phenylpyruvate were oxidized at a very low rate, and formylphenylacetonitrile was an inhilating agents, cyanide, thiol compounds and ascorbic acid. This enzyme was identical with an oxidase-peroxidase isoenzyme. Another oxidase-peroxidase isoenzyme which separated on DEAE-chromatography also showed formylphenylacetic acid ethyl ester oxidase activity, albeit to a lesser extent. The properties of the two isoenzymes of the oxidase were compared and shown to differ in their oxidation and peroxidation properties. The oxidation of formylphenylacetic acid ethyl ester was also catalysed by horseradish peroxidase. The Datura isoenzymes exhibited typical haemoprotein spectra. The oxidation of formylphenylacetic acid ethyl ester was different from other peroxidase-catalysed reactions in not being activated by either Mn2+ or monophenols. The oxidation was inhibited by several mono- and poly-phenols and by catalase. A reaction mechanism for the oxidation is proposed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Evidências têm mostrado que as espécies reativas de oxigênio (ROS) geradas pela NAD(P)H oxidase são importantes moduladores de diversas funções celulares como migração, crescimento, proliferação e sobrevivência. Estudos recentes demonstraram o envolvimento da atividade da NAD(P)H oxidase no crescimento e sobrevivência de células de melanoma. Neste trabalho, investigamos o efeito da inibição da NAD(P)H oxidase por difenileneiodônio (DPI) sobre o crescimento das células de melanoma humano MV3 e observamos que este composto reduziu o crescimento destas células em aproximadamente 50%. A inibição da NAD(P)H oxidase induziu mudanças no formato celular, com arredondamento, diminuição do espraiamento e descolamento celular. Esta redução foi acompanhada por um rearranjo do citoesqueleto de actina, diminuição da fosforilação no resíduo Tyr397 da quinase de adesão focal (FAK) e redução na associação de FAK com actina e com a tirosina quinase c-Src. Isto indica que a inibição da geração de ROS está modulando negativamente vias de sinalização ativadas por integrinas, o que freqüentemente conduz a um tipo particular de morte celular conhecida por anoikis. Comprovando a ocorrência deste fenômeno, observamos que a inibição da atividade da NAD(P)H oxidase aumentou a apoptose das células de melanoma e induziu a ativação da caspase-3. Nossos resultados mostram ainda que a inibição da viabilidade celular por DPI foi revertida com o pré-tratamento das células MV3 com um inibidor de tirosina fosfatases (ortovanadato de sódio). Em resumo, este estudo mostra que a geração de ROS por NAD(P)H oxidase está envolvida nos mecanismos de sobrevivência em células de melanoma, uma vez que afetam as vias de sinalização dependentes de FAK-Src, através da inibição da atividade de proteína tirosina fosfatases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel protein, named BAS-AH, was purified and characterized from the skin of the toad Bufo andrewsi. BAS-AH is a single chain protein and the apparent molecular weight is about 63 kDa as judged by SDS-PAGE. BAS-AH was determined to bind heme (0.89 mol heme/mol protein) as determined by pyridine haemochrome analysis. Fifty percentage cytotoxic concentration (CC50) of BAS-AH on C8166 cells was 9.5 mu M. However, at concentrations that showed little effect oil cell viability, BAS-AH displayed dose dependent inhibition oil HIV-1 infection and replication. The antiviral selectivity indexes corresponding to the measurements of syncytium formation and HIV-1 p24 (CC50/EC50) were 14.4 and 11.4, respectively, corresponding to the . BAS-AH also showed an inhibitory effect on the activity of recombinant HIV-1 reverse transcriptase (IC50 = 1.32 mu M). The N-terminal sequence of BAS-AH was determined to be NAKXKADVIGKISILLGQDNLSNIVAM, which exhibited little identity with other known anti-HIV-1 proteins. BAS-AH is devoid of antibacterial, protcolytic, trypsin inhibitory activity, (L)-amino acid oxidase activity and catalase activity. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND:

Increased superoxide anion production increases oxidative stress and reduces nitric oxide bioactivity in vascular disease states. NAD(P)H oxidase is an important source of superoxide in human blood vessels, and some studies suggest a possible association between polymorphisms in the NAD(P)H oxidase CYBA gene and atherosclerosis; however, no functional data address this hypothesis. We examined the relationships between the CYBA C242T polymorphism and direct measurements of superoxide production in human blood vessels.

METHODS AND RESULTS:

Vascular NAD(P)H oxidase activity was determined in human saphenous veins obtained from 110 patients with coronary artery disease and identified risk factors. Immunoblotting, reverse-transcription polymerase chain reaction, and DNA sequencing showed that p22phox protein, mRNA, and 242C/T allelic variants are expressed in human blood vessels. Vascular superoxide production, both basal and NADH-stimulated, was highly variable between patients, but the presence of the CYBA 242T allele was associated with significantly reduced vascular NAD(P)H oxidase activity, independent of other clinical risk factors for atherosclerosis.

CONCLUSIONS:

Association of the CYBA 242T allele with reduced NAD(P)H oxidase activity in human blood vessels suggests that genetic variation in NAD(P)H oxidase components may play a significant role in modulating superoxide production in human atherosclerosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel biomarker was developed in Daphnia magna to detect organic pollution in groundwater. The haem peroxidase assay, which is an indirect means of measuring oxidase activity, was particularly sensitive to kerosene contamination. Exposure to sub-lethal concentrations of kerosene-contaminated groundwater resulted in a haem peroxidase activity increase by dose with a two-fold activity peak at 25%. Reproduction in D. magna remained unimpaired when exposed to concentrations below 25% for 21 days, and a decline in fecundity was only observed at concentrations above the peak in enzyme activity. The measurement of haem peroxidase activity in D. magna detected sublethal effects of kerosene in just 24 h, whilst offering information on the health status of the organisms. The biomarker may be useful in determining concentrations above which detrimental effects would occur from long-term exposure for fuel hydrocarbons. Moreover, this novel assay detects exposure to chemicals in samples that would normally be classified as non-toxic by acute toxicity tests.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We previously described the presence of nicotinamide adenine dinucleotide phosphate reduced form [NAD(P)H] oxidase components in pancreatic beta-cells and its activation by glucose, palmitic acid, and proinflammatory cytokines. In the present study, the importance of the NAD(P)H oxidase complex for pancreatic beta-cell function was examined. Rat pancreatic islets were incubated in the presence of glucose plus diphenyleneiodonium, a NAD(P)H oxidase inhibitor, for 1 h or with the antisense oligonucleotide for p47(PHOX) during 24 h. Reactive oxygen species (ROS) production was determined by a fluorescence assay using 2,7-dichlorodihydrofluorescein diacetate. Insulin secretion, intracellular calcium responses, [U-(14)C] glucose oxidation, and expression of glucose transporter-2, glucokinase and insulin genes were examined. Antisense oligonucleotide reduced p47(PHOX) expression [an important NAD(P)H oxidase cytosolic subunit] and similarly to diphenyleneiodonium also blunted the enzyme activity as indicated by reduction of ROS production. Suppression of NAD(P)H oxidase activity had an inhibitory effect on intracellular calcium responses to glucose and glucose-stimulated insulin secretion by isolated islets. NAD(P)H oxidase inhibition also reduced glucose oxidation and gene expression of glucose transporter-2 and glucokinase. These findings indicate that NAD(P)H oxidase activation plays an important role for ROS production by pancreatic beta-cells during glucose-stimulated insulin secretion. The importance of this enzyme complex for the beta-cell metabolism and the machinery involved in insulin secretion were also shown. (Endocrinology 150: 2197-2201, 2009)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose-stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free-albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI-diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase-I (CPT-I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47(PHOX) translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up-regulated the protein content of p47(PHOX) and the mRNA levels of p22(PHOX), gp91(PHOX), p47(PHOX), proinsulin and the G protein-coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate. J. Cell. Physiol. 226: 1110-1117, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The chemical and biochemical composition of mango, varies according to the cultivation conditions, variety and maturation state, generally containing a high level of ascorbic acid. In order to establish the correlation between the activity of the ascorbate oxidase [E.C.1.10.3.3], and ascorbic acid level in the ripening process of the Haden mango (Mangífera índica L.), sample of the fruits related to hard green stage (zero), 2, 4, 6, 8, 10, 12 and 14 days stored at 20 ± 2oC, were tested. The samples were obtained by cutting small cubes of 8 cm3 from pulps of 8 mangoes with texture without significant difference (p£0.05) at Magness-Taylor pressure tester scale. In each sample the activity of ascorbate oxidase was followed, in order to check its participation in possible substrate losses during the ripening fruits. The ascorbic acid level and sensory profile also was determined periodically during the ripening period. The enzymatic activity was spectrophotometrically determined at 245 nm and 30oC. The ascorbic acid was analyzed according modified AOAC methodology, and sensory analysis by descriptive quantitative analysis. Data were analyzed using correlation analysis, analysis of variance (ANOVA), Tukey's test, principal component analysis and stepwise discriminant analysis. During the ripening, the ascorbate oxidase activity increased (from 0 to 5.0 x 10-1 U/ml) and the ascorbic acid level decreased (from 209.3 mg to 110.0 mg per 100g of pulp), showing a significant (p£0.05) inverse linear correlation (r=-0.98). The descriptors terms for mangoes were: characteristic flavor, characteristic aroma, sourness, astringency, yellow coloration of pulp, sweetness and succulence. The sensory profile presented significant improvement during ripening. All sensory attributes increased significantly (p£0.05) except sourness and astringency, wich decreased during the ripening of mangoes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Fisiopatologia em Clínica Médica - FMB