202 resultados para OSTEOCLASTS
Resumo:
Osteoclastogenesis is a complex process that is facilitated by bone marrow stromal cells (SCs). To determine if SCs are an absolute requirement for the differentiation of human hematopoietic precursors into fully mature, osteoclasts (OCs), CD34+ cells were mobilized into the peripheral circulation with granulocyte colony-stimulating factor, harvested by leukapheresis, and purified by magnetic-activated cell sorting. This procedure yields a population of CD34+ cells that does not contain SC precursors, as assessed by the lack of expression of the SC antigen Stro-1, and that differentiates only into hematopoietic cells. We found that CD34+, Stro-1- cells cultured with a combination of granulocyte/macrophage colony-stimulating factor, interleukin 1, and interleukin 3 generated cells that fulfill current criteria for the characterization of OCs, including multinucleation, presence of tartrate-resistant acid phosphatase, and expression of the calcitonin and vitronectin receptors and of pp60c-src tyrosine kinase. These OCs also expressed mRNA for the noninserted isoform of the calcitonin receptor and excavated characteristic resorption pits in devitalized bone slices. These data demonstrate that accessory SCs are not essential for human osteoclastogenesis and that granulocyte colony-stimulating factor treatment mobilizes OC precursors into the peripheral circulation.
Resumo:
Hepatocyte growth factor (HGF), also known as scatter factor, is a powerful motogen, mitogen, and morphogen produced by cells of mesodermal origin, acting on epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c-MET protooncogene. We show that the HGF receptor is expressed by human primary osteoclasts, by osteoclast-like cell lines, and by osteoblasts. In both cell lineages, HGF stimulation triggers the receptor kinase activity and autophosphorylation. In osteoclasts, HGF receptor activation is followed by increase in intracellular Ca2+ concentration and by activation of the pp60c-Src kinase. HGF induces changes in osteoclast shape and stimulates chemotactic migration and DNA replication. Osteoblasts respond to HGF by entering the cell cycle, as indicated by stimulation of DNA synthesis. Interestingly, osteoclasts were found to synthesize and secrete biologically active HGF. These data strongly suggest the possibility of an autocrine regulation of the osteoclast by HGF and a paracrine regulation of the osteoblast by the HGF produced by the osteoclast.
Resumo:
To study the physiological control of osteoclasts, the bone resorbing cells, we generated transgenic mice carrying the Cre recombinase gene driven by either the tartrate-resistant acid phosphatase (TRAP) or cathepsin K (Ctsk) promoters. TRAP-Cre and Ctsk-Cre transgenic mouse lines were characterized by breeding with LacZ ROSA 26 (R26R) reporter mice and immunohistochemistry for Cre recombinase. The Cre transgene was functional in all lines, with Cre-mediated recombination occurring primarily in the long bones, vertebrae, ribs, and calvaria. Histological analyses of the bones demonstrated that functional Cre protein was present in 1) osteoclasts (Ctsk-Cre); 2) osteoclasts, columnar proliferating, and hypertrophic chondrocytes (TRAP-Cre line 4); and 3) round proliferating chondrocytes (TRAP-Cre line 3). In conclusion, we generated transgenic mouse lines that will enable the deletion of floxed target genes in osteoclasts, which will be valuable tools for studying the regulation of osteoclast function. (C) 2004 Wiley-Liss, Inc.
Resumo:
Despite the important physiological role of periosteum in the pathogenesis and treatment of osteoporosis, little is known about the structural and cellular characteristics of periosteum in osteoporosis. To study the structural and cellular differences in both diaphyseal and metaphyseal periosteum of osteoporotic rats, samples from the right femur of osteoporotic and normal female Lewis rats were collected and tissue sections were stained with hematoxylin and eosin, antibodies or staining kit against tartrate resistant acid phosphatase (TRAP), alkaline phosphatase (ALP), vascular endothelial growth factor (VEGF), von Willebrand (vWF), tyrosine hydroxylase (TH) and calcitonin gene-related peptide (CGRP). The results showed that the osteoporotic rats had much thicker and more cellular cambial layer of metaphyseal periosteum compared with other periosteal areas and normal rats (P\0.001). The number of TRAP? osteoclasts in bone resorption pits, VEGF? cells and the degree of vascularization were found to be greater in the cambial layer of metaphyseal periosteum of osteoporotic rats (P\0.05), while no significant difference was detected in the number of ALP? cells between the two groups. Sympathetic nerve fibers identified by TH staining were predominantly located in the cambial layer of metaphyseal periosteum of osteoporotic rats. No obvious difference in the expression of CGRP between the two groups was found. In conclusion, periosteum may play an important role in the cortical bone resorption in osteoporotic rats and this pathological process may be regulated by the sympathetic nervous system.
Resumo:
Earlier studies have shown that the influence of fixation stability on bone healing diminishes with advanced age. The goal of this study was to unravel the relationship between mechanical stimulus and age on callus competence at a tissue level. Using 3D in vitro micro-computed tomography derived metrics, 2D in vivo radiography, and histology, we investigated the influences of age and varying fixation stability on callus size, geometry, microstructure, composition, remodeling, and vascularity. Compared were four groups with a 1.5-mm osteotomy gap in the femora of Sprague–Dawley rats: Young rigid (YR), Young semirigid (YSR), Old rigid (OR), Old semirigid (OSR). Hypothesis was that calcified callus microstructure and composition is impaired due to the influence of advanced age, and these individuals would show a reduced response to fixation stabilities. Semirigid fixations resulted in a larger ΔCSA (Callus cross-sectional area) compared to rigid groups. In vitro μCT analysis at 6 weeks postmortem showed callus bridging scores in younger animals to be superior than their older counterparts (pb0.01). Younger animals showed (i) larger callus strut thickness (pb0.001), (ii) lower perforation in struts (pb0.01), and (iii) higher mineralization of callus struts (pb0.001). Callus mineralization was reduced in young animals with semirigid fracture fixation but remained unaffected in the aged group. While stability had an influence, age showed none on callus size and geometry of callus. With no differences observed in relative osteoid areas in the callus ROI, old as well as semirigid fixated animals showed a higher osteoclast count (pb0.05). Blood vessel density was reduced in animals with semirigid fixation (pb0.05). In conclusion, in vivo monitoring indicated delayed callus maturation in aged individuals. Callus bridging and callus competence (microstructure and mineralization) were impaired in individuals with an advanced age. This matched with increased bone resorption due to higher osteoclast numbers. Varying fixator configurations in older individuals did not alter the dominant effect of advanced age on callus tissue mineralization, unlike in their younger counterparts. Age-associated influences appeared independent from stability. This study illustrates the dominating role of osteoclastic activity in age-related impaired healing, while demonstrating the optimization of fixation parameters such as stiffness appeared to be less effective in influencing healing in aged individuals.
Resumo:
Osteoclasts are specialised bone-resorbing cells. This particular ability makes osteoclasts irreplaceable for the continual physiological process of bone remodelling as well as for the repair process during bone healing. Whereas the effects of systemic diseases on osteoclasts have been described by many authors, the spatial and temporal distribution of osteoclasts during bone healing seems to be unclear so far. In the present study, healing of a tibial osteotomy under standardised external fixation was examined after 2, 3, 6 and 9 weeks (n = 8) in sheep. The osteoclastic number was counted, the area of mineralised bone tissue was measured histomorphometrically and density of osteoclasts per square millimetre mineralised tissue was calculated. The osteoclastic density in the endosteal region increased, whereas the density in the periosteal region remained relatively constant. The density of osteoclasts within the cortical bone increased slightly over the first 6 weeks, however, there was a more rapid increase between the sixth and ninth weeks. The findings of this study imply that remodelling and resorption take place already in the very early phase of bone healing. The most frequent remodelling process can be found in the periosteal callus, emphasising its role as the main stabiliser. The endosteal space undergoes resorption in order to recanalise the medullary cavity, a process also started in the very early phase of healing at a low level and increasing significantly during healing. The cortical bone adapts in its outward appearance to the surrounding callus structure. This paradoxic loosening is caused by the continually increasing number and density of osteoclasts in the cortical bone ends. This study clearly emphasises the osteoclastic role especially during early bone healing. These cells do not simply resorb bone but participate in a fine adjusted system with the bone-producing osteoblasts in order to maintain and improve the structural strength of bone tissue.
Resumo:
Background The bisphosphonate, zoledronic acid (ZOL), can inhibit osteoclasts leading to decreased osteoclastogenesis and osteoclast activity in bone. Here, we used a mixed osteolytic/osteoblastic murine model of bone-metastatic prostate cancer, RM1(BM), to determine how inhibiting osteolysis with ZOL affects the ability of these cells to establish metastases in bone, the integrity of the tumour-bearing bones and the survival of the tumour-bearing mice. Methods The model involves intracardiac injection for arterial dissemination of the RM1(BM) cells in C57BL/6 mice. ZOL treatment was given via subcutaneous injections on days 0, 4, 8 and 12, at 20 and 100 µg/kg doses. Bone integrity was assessed by micro-computed tomography and histology with comparison to untreated mice. The osteoclast and osteoblast activity was determined by measuring serum tartrate-resistant acid phosphatase 5b (TRAP 5b) and osteocalcin, respectively. Mice were euthanased according to predetermined criteria and survival was assessed using Kaplan Meier plots. Findings Micro-CT and histological analysis showed that treatment of mice with ZOL from the day of intracardiac injection of RM1(BM) cells inhibited tumour-induced bone lysis, maintained bone volume and reduced the calcification of tumour-induced endochondral osteoid material. ZOL treatment also led to a decreased serum osteocalcin and TRAP 5b levels. Additionally, treated mice showed increased survival compared to vehicle treated controls. However, ZOL treatment did not inhibit the cells ability to metastasise to bone as the number of bone-metastases was similar in both treated and untreated mice. Conclusions ZOL treatment provided significant benefits for maintaining the integrity of tumour-bearing bones and increased the survival of tumour bearing mice, though it did not prevent establishment of bone-metastases in this model. From the mechanistic view, these observations confirm that tumour-induced bone lysis is not a requirement for establishment of these bone tumours.
Resumo:
Osteocytes, known to act as the main regulators of bone homeostasis, have become a major focus in the field of bone research. Bioactive ceramics have been widely used for bone regeneration. However, there are few studies about the interaction of osteocytes with bioceramics. The effects of osteocytes on the in vitro and in vivo osteogenesis of bioceramics are also unclear. The aim of this study was to investigate the role of osteocytes on the b-tricalcium phosphate (b-TCP) stimulated osteogenesis. It was found that osteocytes responded to the b-TCP stimulation, leading to the release of Wnt (wingless-related MMTV integration site), which enhanced osteogenic differentiation of bone marrow stromal cells via Wnt signaling pathway. Receptor activator of nuclear factor kappa B ligand, an osteoclast inducer, was also upregulated, indicating that osteocytes would also participated in activation of osteoclasts, which played a major role in the degradation process of b-TCP and new bone remodeling. In vivo studies further demonstrated that when the material was completely embedded by newly formed bone, the only cell contacting with the material was osteocyte. However, the material would eventually be degraded and replaced by the new bone, requiring the participation of osteoclasts and osteoblasts, which were demonstrated by using immunostaining in this study. As the only cell contacting with the material, osteocytes probably acted in a regulatory role to regulate the surrounding osteoclasts and osteoblasts. Osteocytes were also found to participate in the maturation of osteoblasts and the mineralization process of biomaterials, by upregulating E11 (podoplanin) and dentin matrix protein 1 expression. These findings indicated that osteocytes involved in bone biomaterial-mediated osteogenesis and biomaterial degradation, providing valuable insights into the mechanism of material-stimulated osteogenesis, and a novel strategy to optimize the evaluating system for the biological properties of biomaterials.
Resumo:
Periodontitis is an inflammatory disease characterized by periodontal pocket formation and alveolar bone resorption. Periodontal bone resorption is induced by osteoclasts and receptor activator of nuclear factor-κB ligand (RANKL) which is an essential and central regulator of osteoclast development and osteoclast function. Therefore, RANKL plays a critical role in periodontal bone resorption. In this review, we have summarized the sources of RANKL in periodontal disease and explored which factors may regulate RANKL expression in this disease.
Resumo:
PTH-stimulated intracellular signaling is regulated by the cytoplasmic adaptor molecule barrestin. We reported that the response of cancellous bone to intermittent PTH is reduced in b-arrestin22/2 mice and suggested that b-arrestins could influence the bone mineral balance by controlling RANKL and osteoprotegerin (OPG) gene expression. Here, we study the role of b-arrestin2 on the in vitro development and activity of bone marrow (BM) osteoclasts (OCs) and Ephrins ligand (Efn), and receptor (Eph) mRNA levels in bone in response to PTH and the changes of bone microarchitecture in wildtype (WT) and barrestin2 2/2 mice in models of bone remodeling: a low calcium diet (LoCa) and ovariectomy (OVX). The number of PTH-stimulated OCs was higher in BM cultures from b-arrestin22/2 compared with WT, because of a higher RANKL/OPG mRNA and protein ratio, without directly influencing osteoclast activity. In vivo, high PTH levels induced by LoCa led to greater changes in TRACP5b levels in b-arrestin22/2 compared with WT. LoCa caused a loss of BMD and bone microarchitecture, which was most prominent in b-arrestin22/2. PTH downregulated Efn and Eph genes in b-arrestin22/2, but not WT. After OVX, vertebral trabecular bone volume fraction and trabecular number were lower in b-arrestin22/2 compared with WT. Histomorphometry showed that OC number was higher in OVX-b-arrestin22/2 compared with WT. These results indicate that b-arrestin2 inhibits osteoclastogenesis in vitro, which resulted in decreased bone resorption in vivo by regulating RANKL/OPG production and ephrins mRNAs. As such, b-arrestins should be considered an important mechanism for the control of bone remodeling in response to PTH and estrogen deprivation.
Resumo:
Bone sialoprotein (BSP) and osteopontin (OPN) are secreted glycoproteins with a conserved Arg-Gly-Asp (RGD) integrin-binding motif and are expressed predominantly in bone. The RGD tripeptide is commonly present in extracellular attachment proteins and has been shown to mediate the attachment of osteosarcoma cells and osteoclasts. To determine the origin and incidence of BSP and OPN mRNA expression in primary tumor, a cohort of archival, primary invasive breast carcinoma specimens was analyzed. BSP transcripts were detected in 65% and OPN transcripts in 77% of breast cancers examined. In general, BSP and OPN transcripts were detected in both invasive and in situ carcinoma components. The transcripts were not detected in surrounding stromal cells or in peritumoral macrophages. Despite its abundance in carcinomas, BSP expression was not detected in a panel of 11 human breast cancer cell lines (MCF-7, T47D, SK-Br-3, MDA-MB-453, MDA-MB- 231, MDA-MB-436, BT549, MCF-7(AOR), Hs578T, MDA-MB-435, and LCC15-MB) and OPN expression was detected only in two of these (MDA-MB-435 and LCC15-MB). To examine the possibility that expression of these genes was down-regulated in cell culture, several cell lines were grown as nude mouse xenografts in vivo; however, these tumors also failed to express BSP. OPN expression was identified in all cell lines grown as nude mouse xenografts. Our data suggest that in human primary breast tumors, the origin of BSP and OPN mRNA is predominantly the breast cancer cells and that expression of these transcripts is influenced by the tumor environment.
Resumo:
Background Osteocytes, the most abundant cells in bone, havemultiple functions, including acting as mechanosensors and regulating mineralization. It is clear that osteocytes influence bone remodeling by controlling the differentiation and activity of osteoblasts and osteoclasts. Determining the relationship between titanium implants and osteocytes may therefore benefit our understanding of the process of osseointegration. Purpose The aim of this study was to visualize the ultrastructural relationship between osteocytes and the titanium implant surface following osseointegration in vivo. Materials and Methods Titanium implants were placed in the maxillary molar regions of eight female Sprague Dawley rats, 3 months old. The animals were sacrificed 8 weeks after implantation, and undecalcified tissue sections were prepared. Resin-cast samples were subsequently acid-etched with 37% phosphoric acid prior to examination using scanning electron microscopy. Results Compared with mature bone, where the osteocytes were arranged in an ordered fashion, the osteocytes appeared less organized in the newly formed bone around the titanium implant. Further, a layer of mineralization with few organic components was observed on the implant surface. This study shows for the first time that osteocytes and their dendrites are directly connected with the implant surface. Conclusions: This study shows the direct anchorage of osteocytes via dendritic processes to a titanium implant surface in vivo. This suggests an important regulatory role for osteocytes and their lacunar-canalicular network in maintaining long-term osseointegration.
Resumo:
Objective: An imbalance between bone formation and bone resorption is thought to underlie the pathogenesis of reduced bone mass in osteoporosis. Bone resorption is carried out by osteoclasts, which are formed from marrow-derived cells that circulate in the monocyte fraction. Ihe aim of this study was to determine the role of osteoclast formation in the pathogenesis of bone loss in osteoporosis. Methods: The proportion of circulating osteoclast precursors and their relative sensitivity to the osteoclastogenic effects of M-CSF, 1,25(OH)2D3 and RANKL were assessed in primary osteoporosis patients and normal controls. Results: Although there was no difference in the number of circulating osteoclast precursors in osteoporosis patients and normal controls, osteoclasts formed from osteoporosis patients exhibited substantially increased resorptive activity relative to normal controls. Although no increased sensitivity to the osteoclastogenic effects of 1,25(OH)2D3 or M-CSF was noted, increased bone resorption was found in osteoporosis peripheral blood mononuclear cell (PBMC) cultures to which these factors were added. Conclusion: Our findings suggest that osteoclast functional activity rather than formation is increased in primary involutional osteoporosis and that dexamethasone acts to increase osteoclast formation.