990 resultados para ORGANIC FILMS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In dieser Arbeit wurden Fluorkohlenstoff-basierte und siliziumorganische Plasmapolymerfilme hergestellt und hinsichtlich ihrer strukturellen und funktionalen Eigenschaften untersucht. Beide untersuchten Materialsysteme sind in der Beschichtungstechnologie von großem wissenschaftlichen und anwendungstechnischen Interesse. Die Schichtabscheidung erfolgte mittels plasmachemischer Gasphasenabscheidung (PECVD) an Parallelplattenreaktoren. Bei den Untersuchungen zur Fluorkohlenstoff-Plasmapolymerisation stand die Herstellung ultra-dünner, d. h. weniger als 5 nm dicker Schichten im Vordergrund. Dies wurde durch gepulste Plasmaanregung und Verwendung eines Gasgemisches aus Trifluormethan (CHF3) und Argon realisiert. Die Bindungsstruktur der Schichten wurden in Abhängigkeit der eingespeisten Leistung, die den Fragmentationsgrad der Monomere im Plasma bestimmt, analysiert. Hierzu wurden die Röntgen-Photoelektronenspektroskopie (XPS), Rasterkraftmikroskopie (AFM), Flugzeit-Sekundärionenmassenspektrometrie (ToF-SIMS) und Röntgenreflektometrie (XRR) eingesetzt. Es zeigte sich, dass die abgeschiedenen Schichten ein homogenes Wachstumsverhalten und keine ausgeprägten Interfacebereiche zum Substrat und zur Oberfläche hin aufweisen. Die XPS-Analysen deuten darauf hin, dass Verkettungsreaktionen von CF2-Radikalen im Plasma eine wichtige Rolle für den Schichtbildungsprozess spielen. Weiterhin konnte gezeigt werden, dass der gewählte Beschichtungsprozess eine gezielte Reduzierung der Benetzbarkeit verschiedener Substrate ermöglicht. Dabei genügen Schichtdicken von weniger als 3 nm zur Erreichung eines teflonartigen Oberflächencharakters mit Oberflächenenergien um 20 mN/m. Damit erschließen sich neue Applikationsmöglichkeiten ultra-dünner Fluorkohlenstoffschichten, was anhand eines Beispiels aus dem Bereich der Nanooptik demonstriert wird. Für die siliziumorganischen Schichten unter Verwendung des Monomers Hexamethyldisiloxan (HMDSO) galt es zunächst, diejenigen Prozessparameter zu identifizieren, die ihren organischen bzw. glasartigen Charakter bestimmen. Hierzu wurde der Einfluss von Leistungseintrag und Zugabe von Sauerstoff als Reaktivgas auf die Elementzusammensetzung der Schichten untersucht. Bei niedrigen Plasmaleistungen und Sauerstoffflüssen werden vor allem kohlenstoffreiche Schichten abgeschieden, was auf eine geringere Fragmentierung der Kohlenwasserstoffgruppen zurückgeführt wurde. Es zeigte sich, dass die Variation des Sauerstoffanteils im Prozessgas eine sehr genaue Steuerbarkeit der Schichteigenschaften ermöglicht. Mittels Sekundär-Neutralteilchen-Massenspektrometrie (SNMS) konnte die prozesstechnische Realisierbarkeit und analytische Quantifizierbarkeit von Wechselschichtsystemen aus polymerartigen und glasartigen Lagen demonstriert werden. Aus dem Intensitätsverhältnis von Si:H-Molekülen zu Si-Atomen im SNMS-Spektrum ließ sich der Wasserstoffgehalt bestimmen. Weiterhin konnte gezeigt werden, dass durch Abscheidung von HMDSO-basierten Gradientenschichten eine deutliche Reduzierung von Reibung und Verschleiß bei Elastomerbauteilen erzielt werden kann.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Actually in the oil industry biotechnological approaches represent a challenge. In that, attention to metal structures affected by electrochemical corrosive processes, as well as by the interference of microorganisms (biocorrosion) which affect the kinetics of the environment / metal interface. Regarding to economical and environmental impacts reduction let to the use of natural products as an alternative to toxic synthetic inhibitors. This study aims the employment of green chemistry by evaluating the stem bark extracts (EHC, hydroalcoholic extract) and leaves (ECF, chloroform extract) of plant species Croton cajucara Benth as a corrosion inhibitor. In addition the effectiveness of corrosion inhibition of bioactive trans-clerodane dehydrocrotonin (DCTN) isolated from the stem bark of this Croton was also evaluated. For this purpose, carbon steel AISI 1020 was immersed in saline media (3,5 % NaCl) in the presence and absence of a microorganism recovered from a pipeline oil sample. Corrosion inhibition efficiency and its mechanisms were investigated by linear sweep voltammetry and electrochemical impedance. Culture-dependent and molecular biology techniques were used to characterize and identify bacterial species present in oil samples. The tested natural products EHC, ECF and DCTN (DMSO as solvent) in abiotic environment presented respectively, corrosion inhibition efficiencies of 57.6% (500 ppm), 86.1% (500 ppm) and 54.5% (62.5 ppm). Adsorption phenomena showed that EHC best fit Frumkin isotherm and ECF to Temkin isotherm. EHC extract (250 ppm) dissolved in a polar microemulsion system (MES-EHC) showed significant maximum inhibition efficiency (93.8%) fitting Langmuir isotherm. In the presence of the isolated Pseudomonas sp, EHC and ECF were able to form eco-compatible organic films with anti-corrosive properties

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prussian Blue has been introduced as a mediator to achieve stable, sensitive, reproducible, and interference-free biosensors. However, Na(+), Li(+), H(+), and all group II cations are capable to block the activity of Prussian Blue and, because Na(+) can be found in most human fluids, Prussian Blue analogs have already been developed to overcome this problem. These analogs, such as copper hexacyanoferrate, have also been introduced in a conducting polypyrrole matrix to create hybrid materials (copper hexacyanoferrate/polypyrrole, CuHCNFe/Ppy) with improved mechanical and electrochemical characteristics. Nowadays, the challenges in amperometric enzymatic biosensors consist of improving the enzyme immobilization and in making the chemical signal transduction more efficient. The incorporation of nanostructured materials in biosensors can optimize both steps and a nanostructured hybrid CuHCNFe/Ppy mediator has been developed using a template of colloidal polystyrene particles. The nanostructured material has achieved sensitivities 7.6 times higher than the bulk film during H(2)O(2) detection and it has also presented better results in other analytical parameters such as time response and detection limit. Besides, the nanostructured mediator was successfully applied at glucose biosensing in electrolytes containing Prussian Blue blocking cations. (C) 2008 The Electrochemical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thin films obtained by plasma polymerization of ethyl ether, methyl or ethyl acetate, acetaldehyde, acetone and 2-propanol were compared. Infrared spectroscopy (FFIR), resistance to chemicals, contact angle measurements, X-ray photoelectron spectroscopy (XPS), optical and scanning electron microscopy (SEM), and quartz crystal microbalance (QCM) were carried out. For all films FTIR showed high intensity for polar bonds yet the films are not resistant to polar solvents. Contact angle measurements revealed hydrophilic and organophilic surfaces and XPS pointed out a high proportion of oxygenated bonds. All films showed good step coverage and peeling was significant only with acetone and 2-propanol. All films are adsorbent for organic compounds in a large scale of polarity but acetaldehyde and 2-propanol act like a selective membrane. Also, deposition of these films on hydrophobic substrates leads to island formation. A possible model to explain the results must consider the hydrogen bridge formation on 2-propanol and acetaldehyde films. Ethyl ether, ethyl and methyl acetate showed good characteristics for development of sensor and sample pretreatment using miniaturized devices. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using atomic force microscopy we have studied the nanomechanical response to nanoindentations of surfaces of highly oriented molecular organic thin films (thickness¿1000¿nm). The Young¿s modulus E can be estimated from the elastic deformation using Hertzian mechanics. For the quasi-one-dimensional metal tetrathiafulvalene tetracyanoquinodimethane E~20¿GPa and for the ¿ phase of the p-nitrophenyl nitronyl nitroxide radical E~2GPa. Above a few GPa, the surfaces deform plastically as evidenced by discrete discontinuities in the indentation curves associated to molecular layers being expelled by the penetrating tip.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work is the production and characterization of plasma polymerized acetaldehyde thin films. These films show highly polar species, are hydrophilic, organophilic and easily adsorb organic reactants with CO radicals but only allow permeation of reactants with OH radicals. The good step coverage of films deposited on aluminum trenches is useful for sensor development. Films deposited on hydrophobic substrates may result in a discontinued layer, which allows the use of preconcentration in sample pretreatment. Deposition on microchannels showed the possibility of chromatographic columns and/or retention system production to selectively detect or remove organic compounds from gas flows.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This proposed thesis is entitled “Plasma Polymerised Organic Thin Films: A study on the Structural, Electrical, and Nonlinear Optical Properties for Possible Applications. Polymers and polymer based materials find enormous applications in the realm of electronics and optoelectronics. They are employed as both active and passive components in making various devices. Enormous research activities are going on in this area for the last three decades or so, and many useful contributions are made quite accidentally. Conducting polymers is such a discovery, and eversince the discovery of conducting polyacetylene, a new branch of science itself has emerged in the form of synthetic metals. Conducting polymers are useful materials for many applications like polymer displays, high density data storage, polymer FETs, polymer LEDs, photo voltaic devices and electrochemical cells. With the emergence of molecular electronics and its potential in finding useful applications, organic thin films are receiving an unusual attention by scientists and engineers alike. This is evident from the vast literature pertaining to this field appearing in various journals. Recently, computer aided design of organic molecules have added further impetus to the ongoing research activities in this area. Polymers, especially, conducting polymers can be prepared both in the bulk and in the thinfilm form. However, many applications necessitate that they are grown in the thin film form either as free standing or on appropriate substrates. As far as their bulk counterparts are concerned, they can be prepared by various polymerisation techniques such as chemical routes and electrochemical means. A survey of the literature reveals that polymers like polyaniline, polypyrrole, polythiophene, have been investigated with a view to studying their structural electrical and optical properties. Among the various alternate techniques employed for the preparation of polymer thin films, the method of plasma polymerisation needs special attention in this context. The technique of plasma polymerisation is an inexpensive method and often requires very less infra structure. This method includes the employment of ac, rf, dc, microwave and pulsed sources. They produce pinhole free homogeneous films on appropriate substrates under controlled conditions. In conventional plasma polymerisation set up, the monomer is fed into an evacuated chamber and an ac/rf/dc/ w/pulsed discharge is created which enables the monomer species to dissociate, leading to the formation of polymer thin films. However, it has been found that the structure and hence the properties exhibited by plasma polymerized thin films are quite different from that of their counterparts produced by other thin film preparation techniques such as electrochemical deposition or spin coating. The properties of these thin films can be tuned only if the interrelationship between the structure and other properties are understood from a fundamental point of view. So very often, a through evaluation of the various properties is a pre-requisite for tailoring the properties of the thin films for applications. It has been found that conjugation is a necessary condition for enhancing the conductivity of polymer thin films. RF technique of plasma polymerisation is an excellent tool to induce conjugation and this modifies the electrical properties too. Both oxidative and reductive doping can be employed to modify the electrical properties of the polymer thin films for various applications. This is where organic thin films based on polymers scored over inorganic thin films, where in large area devices can be fabricated with organic semiconductors which is difficult to achieve by inorganic materials. For such applications, a variety of polymers have been synthesized such as polyaniline, polythiophene, polypyrrole etc. There are newer polymers added to this family every now and then. There are many virgin areas where plasma polymers are yet to make a foray namely low-k dielectrics or as potential nonlinear optical materials such as optical limiters. There are also many materials which are not been prepared by the method of plasma polymerisation. Some of the materials which are not been dealt with are phenyl hydrazine and tea tree oil. The advantage of employing organic extracts like tea tree oil monomers as precursors for making plasma polymers is that there can be value addition to the already existing uses and possibility exists in converting them to electronic grade materials, especially semiconductors and optically active materials for photonic applications. One of the major motivations of this study is to synthesize plasma polymer thin films based on aniline, phenyl hydrazine, pyrrole, tea tree oil and eucalyptus oil by employing both rf and ac plasma polymerisation techniques. This will be carried out with the objective of growing thin films on various substrates such as glass, quartz and indium tin oxide (ITO) coated glass. There are various properties namely structural, electrical, dielectric permittivity, nonlinear optical properties which are to be evaluated to establish the relationship with the structure and the other properties. Special emphasis will be laid in evaluating the optical parameters like refractive index (n), extinction coefficient (k), the real and imaginary components of dielectric constant and the optical transition energies of the polymer thin films from the spectroscopic ellipsometric studies. Apart from evaluating these physical constants, it is also possible to predict whether a material exhibit nonlinear optical properties by ellipsometric investigations. So further studies using open aperture z-scan technique in order to evaluate the nonlinear optical properties of a few selected samples which are potential nonlinear optical materials is another objective of the present study. It will be another endeavour to offer an appropriate explanation for the nonlinear optical properties displayed by these films. Doping of plasma polymers is found to modify both the electrical conductivity and optical properties. Iodine is found to modify the properties of the polymer thin films. However insitu iodine doping is tricky and the film often looses its stability because of the escape of iodine. An appropriate insitu technique of doping will be developed to dope iodine in to the plasma polymerized thin films. Doping of polymer thin films with iodine results in improved and modified optical and electrical properties. However it requires tools like FTIR and UV-Vis-NIR spectroscopy to elucidate the structural and optical modifications imparted to the polymer films. This will be attempted here to establish the role of iodine in the modification of the properties exhibited by the films

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diffusive gradients in thin films (DGT) and tangential-flow ultrafiltration (TF-UF) were combined for fractionation of Al and Cu in river water containing high content of dissolved organic carbon. A procedure based on ultrafiltration data is proposed to determine diffusion coefficients of the analytes in water samples and model solutions containing both free metal (M) and complex (metal - humic substance). Aiming to evaluate the accuracy of the proposed approach, the DGT results were compared with those from a protocol for determination of labile Al and Cu based on solid phase extraction (SPE). Good agreement between data from DGT and SPE were attained for model solutions. For analysis of real organic-rich water samples, differences between DGT and SPE measurements were consistent with the time-scales of the techniques. The concentration of labile Al determined by DGT were lower than the total dissolved concentrations (determined by inductively coupled plasma mass spectrometry) and exceeded the ultrafiltered concentration, indicating that inorganic Al species (species small enough to pass through 1 kDa membrane) were minor species as compared with Al organic complexes. For both Al and Cu, there were species not measured by DGT as they are not sufficiently labile. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organic-inorganic hybrids formed by polyether-based chains grafted to both ends to a siliceous backbone through urea cross-linkages (-NHC=O)NH-), named di-ureasil, have been used as host for incorporation of Eu3+ in the form of EuCl3. The bulks and the thin films, both optically transparent, were characterized by excitation, absorption and emission spectroscopy. Photoluminescence results point out that the Eu3+ ions occupy, at least, two distinct local environments. Besides, the processing method (thin films or bulks) has influence on the energy levels of the hybrid host probably due to the lower degree of organization of the thin films structure. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-supported organic-inorganic hybrid transparent films have been prepared from bacterial cellulose and boehmite. SEM results indicate that the BC membranes are covered by Boehmite and XRD patterns suggest structural changes on cellulose due to Boehmite addition. Thermal stability is accessed through TG curves and is dependent on Boehmite content. Transparency, as evaluated by UV-Vis absorption, increases with increasing content of boehmite suggesting application of these materials as transparent substrates for opto-electronic devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organic semiconductors have great promise in the field of electronics due to their low cost in term of fabrication on large areas and their versatility to new devices, for these reasons they are becoming a great chance in the actual technologic scenery. Some of the most important open issues related to these materials are the effects of surfaces and interfaces between semiconductor and metals, the changes caused by different deposition methods and temperature, the difficulty related to the charge transport modeling and finally a fast aging with time, bias, air and light, that can change the properties very easily. In order to find out some important features of organic semiconductors I fabricated Organic Field Effect Transistors (OFETs), using them as characterization tools. The focus of my research is to investigate the effects of ion implantation on organic semiconductors and on OFETs. Ion implantation is a technique widely used on inorganic semiconductors to modify their electrical properties through the controlled introduction of foreign atomic species in the semiconductor matrix. I pointed my attention on three major novel and interesting effects, that I observed for the first time following ion implantation of OFETs: 1) modification of the electrical conductivity; 2) introduction of stable charged species, electrically active with organic thin films; 3) stabilization of transport parameters (mobility and threshold voltage). I examined 3 different semiconductors: Pentacene, a small molecule constituted by 5 aromatic rings, Pentacene-TIPS, a more complex by-product of the first one, and finally an organic material called Pedot PSS, that belongs to the branch of the conductive polymers. My research started with the analysis of ion implantation of Pentacene films and Pentacene OFETs. Then, I studied totally inkjet printed OFETs made of Pentacene-TIPS or PEDOT-PSS, and the research will continue with the ion implantation on these promising organic devices.