992 resultados para ORGAN PRESERVATION SOLUTIONS
Resumo:
BACKGROUND. The high rate of reperfusion injury in clinical lung transplantation mandates significant improvements in lung preservation. Innovations should be validated using standardized and low-cost experimental models. METHODS. The model introduced here is analyzed by comparing global lung function after varying ischemic times (2, 4, 8, 16, and 24 hours). A rat double-lung block is flush-perfused, and the main pulmonary artery and left atrium are connected to the left pulmonary artery and vein of a syngeneic recipient using a T-shaped stent. With pressure side ports and incorporated flow crystals, measurement of vascular resistance and graft oxygenation can be performed. The transplant is ventilated separately, and compliance and resistance are determined. RESULTS. The increase in the ischemic interval from 2 to 24 hours caused an increase in the alveolar arterial oxygen difference from 220 +/- 20 to 600 +/- 34 mm Hg, pulmonary vascular resistance from 198 +/- 76 to 638 +/- 212 mm Hg.mL-1.min-1, and resistance to airflow from 274 +/- 50 to 712 +/- 30 cm H2O/L H2O, and a decrease in pulmonary compliance from 0.4 +/- 0.05 to 0.12 +/- 0.06 mL/cm H2O. CONCLUSIONS. This in situ, syngeneic rat lung transplantation model offers an alternative to large animal models for verification of lung preservation solutions and for modification of donor or recipient treatment regimens.
Resumo:
Traditionally, ice-binding proteins (IBPs), also known as antifreeze proteins (AFPs), have been defined by two universal activities: ice recrystallization inhibition and thermal hysteresis. However, there remains the possibility IBPs have other complementary functions given the diversity found within this protein group. This thesis explores some of these in both natural and applied settings, in the hopes of furthering our understanding of this remarkable group of proteins. Plant IBPs could function as part of a defensive strategy against ice nucleators produced by certain pathogens. To assess this hypothesis, recombinant IBPs from perennial ryegrass and purple false brome were combined with the ice nucleation protein (INP) from the plant pathogen, Pseudomonas syringae. Strikingly, the plant proteins depressed the freezing point of the bacterial INP, while a fish AFP could not, nor did the INPs have any effect on IBP activity. Thus, the interaction between these two different proteins suggests a role in plant defensive strategies against pathogenic bacteria as another IBP function. In addition, the potential use of hyperactive insect IBPs in organ preservation was investigated. Current kidney preservation techniques involve storing the organ at 4 °C for a maximum of 24 h prior to transplantation. Extending this “safe” time would have profound effects on renal transplants, however, ischemic injury is prevalent when storage periods are prolonged. Experiments described here allowed subzero preservation for 72 h with the addition of a beetle IBP to CryoStasis® solution. Kidneys stored using the traditional technique for 24 h and the method developed here for 72 h showed similar levels of biomarker enzymes, underscoring the potential utility of insect IBPs for future transplant purposes. Finally, IBP function in the freeze-tolerant gall fly, Eurosta solidaginis, was examined. Larvae representing the mid-autumn stage displayed ice-binding activity, suggesting an IBP is being expressed, possibly as a protective measure against freezing damage when fall temperatures can unpredictably drop. IBP activity was also observed in the larvae’s host plant, Solidago spp. Mass spectrometry analysis of ice-affinity purified plant extracts provided three candidate pathogenesis-related proteins that could be responsible for the detected activity, further demonstrating additional functions of IBPs.
Resumo:
PRELIDA (PREserving LInked DAta) is an FP7 Coordination Action funded by the European Commission under the Digital Preservation Theme. PRELIDA targets the particular stakeholders of the Linked Data community, including data providers, service providers, technology providers and end user communities. These stakeholders have not been traditionally targeted by the Digital Preservation community, and are typically not aware of the digital preservation solutions already available. So an important task of PRELIDA is to raise awareness of existing preservation solutions and to facilitate their uptake. At the same time, the Linked Data cloud has specific characteristics in terms of structuring, interlinkage, dynamicity and distribution that pose new challenges to the preservation community. PRELIDA organises in-depth discussions among the two communities to identify which of these characteristics require novel solutions, and to develop road maps for addressing the new challenges. PRELIDA will complete its lifecycle at the end of this year, and the talk will report about the major findings.
Resumo:
Design and analysis of conceptually different cooling systems for the human heart preservation are numerically investigated. A heart cooling container with required connections was designed for a normal size human heart. A three-dimensional, high resolution human heart geometric model obtained from CT-angio data was used for simulations. Nine different cooling designs are introduced in this research. The first cooling design (Case 1) used a cooling gelatin only outside of the heart. In the second cooling design (Case 2), the internal parts of the heart were cooled via pumping a cooling liquid inside both the heart’s pulmonary and systemic circulation systems. An unsteady conjugate heat transfer analysis is performed to simulate the temperature field variations within the heart during the cooling process. Case 3 simulated the currently used cooling method in which the coolant is stagnant. Case 4 was a combination of Case 1 and Case 2. A linear thermoelasticity analysis was performed to assess the stresses applied on the heart during the cooling process. In Cases 5 through 9, the coolant solution was used for both internal and external cooling. For external circulation in Case 5 and Case 6, two inlets and two outlets were designed on the walls of the cooling container. Case 5 used laminar flows for coolant circulations inside and outside of the heart. Effects of turbulent flow on cooling of the heart were studied in Case 6. In Case 7, an additional inlet was designed on the cooling container wall to create a jet impinging the hot region of the heart’s wall. Unsteady periodic inlet velocities were applied in Case 8 and Case 9. The average temperature of the heart in Case 5 was +5.0oC after 1500 s of cooling. Multi-objective constrained optimization was performed for Case 5. Inlet velocities for two internal and one external coolant circulations were the three design variables for optimization. Minimizing the average temperature of the heart, wall shear stress and total volumetric flow rates were the three objectives. The only constraint was to keep von Mises stress below the ultimate tensile stress of the heart’s tissue.
Resumo:
Traditionally, ice-binding proteins (IBPs), also known as antifreeze proteins (AFPs), have been defined by two universal activities: ice recrystallization inhibition and thermal hysteresis. However, there remains the possibility IBPs have other complementary functions given the diversity found within this protein group. This thesis explores some of these in both natural and applied settings, in the hopes of furthering our understanding of this remarkable group of proteins. Plant IBPs could function as part of a defensive strategy against ice nucleators produced by certain pathogens. To assess this hypothesis, recombinant IBPs from perennial ryegrass and purple false brome were combined with the ice nucleation protein (INP) from the plant pathogen, Pseudomonas syringae. Strikingly, the plant proteins depressed the freezing point of the bacterial INP, while a fish AFP could not, nor did the INPs have any effect on IBP activity. Thus, the interaction between these two different proteins suggests a role in plant defensive strategies against pathogenic bacteria as another IBP function. In addition, the potential use of hyperactive insect IBPs in organ preservation was investigated. Current kidney preservation techniques involve storing the organ at 4 °C for a maximum of 24 h prior to transplantation. Extending this “safe” time would have profound effects on renal transplants, however, ischemic injury is prevalent when storage periods are prolonged. Experiments described here allowed subzero preservation for 72 h with the addition of a beetle IBP to CryoStasis® solution. Kidneys stored using the traditional technique for 24 h and the method developed here for 72 h showed similar levels of biomarker enzymes, underscoring the potential utility of insect IBPs for future transplant purposes. Finally, IBP function in the freeze-tolerant gall fly, Eurosta solidaginis, was examined. Larvae representing the mid-autumn stage displayed ice-binding activity, suggesting an IBP is being expressed, possibly as a protective measure against freezing damage when fall temperatures can unpredictably drop. IBP activity was also observed in the larvae’s host plant, Solidago spp. Mass spectrometry analysis of ice-affinity purified plant extracts provided three candidate pathogenesis-related proteins that could be responsible for the detected activity, further demonstrating additional functions of IBPs.
Resumo:
Background: There is a growing need to improve myocardial protection, which will lead to better performance of cardiac operations and reduce morbidity and mortality. Therefore, the objective of this study was to compare the efficacy of myocardial protection solution using both intracellular and extracellular crystalloid type regarding the performance of the electrical conduction system, left ventricular contractility and edema, after being subjected to ischemic arrest and reperfusion. Methods: Hearts isolated from male Wistar (n=32) rats were prepared using Langendorff method and randomly divided equally into four groups according the cardioprotective solutions used Krebs-Henseleit-Buffer (KHB), Bretschneider-HTK (HTK), St. Thomas-1 (STH-1) and Celsior (CEL). After stabilization with KHB at 37 degrees C, baseline values (control) were collected for heart rate (HR), left ventricle systolic pressure (LVSP), maximum first derivate of rise left ventricular pressure (+dP/dt), maximum first derivate of fall left ventricular pressure (-dP/dt) and coronary flow (CF). The hearts were then perfused at 10 degrees C for 5 min and kept for 2 h in static ischemia at 20 degrees C in each cardioprotective solution. Data evaluation was done using analysis of variance in completely randomized One-Way ANOVA and Tukey's test for multiple comparisons. The level of statistical significance chosen was P<0.05. Results: HR was restored with all the solutions used. The evaluation of left ventricular contractility (LVSP, +dP/dt and -dP/dt) showed that treatment with CEL solution was better compared to other solutions. When analyzing the CF, the HTK solution showed better protection against edema. Conclusion: Despite the cardioprotective crystalloid solutions studied are not fully able to suppress the deleterious effects of ischemia and reperfusion in the rat heart, the CEL solution had significantly higher results followed by HTK>KHB>STH-1.
Resumo:
Hearing implants are an important devices for combating deafness over the next 15 years. In this paper, we focus on the means to determine the sensitivity of the hearing organ to disturbances produced by implants and other interventions, and those induced by implantation. The preservation of residual hearing is an important aspect to be considered, however, the sensitivity of this to the process of implantation, device location and power levels is not well understood. Within this paper, a new experimental set-up to contrast the merits of different implantation techniques, implant location and power transmission are discussed and the initial results regarding disturbance levels using different surgical techniques are described.
Resumo:
Alginate encapsulation is a simple and cost-effective technique to preserve plant germplasm but there are only a few reports available on preservation of encapsulated explants of two highly valuable groups of tropical trees, the eucalypts (Myrtaceae) and mahoganies (Meliaceae). This study investigated alginate encapsulation for preservation of the eucalypt hybrid, Corymbia torelliana × C. citriodora, and the African mahogany, Khaya senegalensis. We assessed shoot regrowth of encapsulated shoot tips and nodes after storage for 0, 3, 6 and 12 months on media varying in sucrose and nutrient content, under storage conditions of 14°C and zero-irradiance. Encapsulated explants of both trees were preserved most effectively on high-nutrient (half-strength Murashige and Skoog) medium containing 1% sucrose, which provided very high frequencies of shoot regrowth (92–100% for Corymbia and 71–98% for Khaya) and excellent shoot development after 12 months’ storage. This technique provides an extremely efficient means for storage and exchange of eucalypts and mahoganies, ideally suited for incorporation into plant breeding and germplasm conservation programs.
Resumo:
This paper describes the cost-benefit analysis of digital long-term preservation (LTP) that was carried out in the context of the Finnish National Digital Library Project (NDL) in 2010. The analysis was based on the assumption that as many as 200 archives, libraries, and museums will share an LTP system. The term ‘system’ shall be understood as encompassing not only information technology, but also human resources, organizational structures, policies and funding mechanisms. The cost analysis shows that an LTP system will incur, over the first 12 years, cumulative costs of €42 million, i.e. an average of €3.5 million per annum. Human resources and investments in information technology are the major cost factors. After the initial stages, the analysis predicts annual costs of circa €4 million. The analysis compared scenarios with and without a shared LTP system. The results indicate that a shared system will have remarkable benefits. At the development and implementation stages, a shared system shows an advantage of €30 million against the alternative scenario consisting of five independent LTP solutions. During the later stages, the advantage is estimated at €10 million per annum. The cumulative cost benefit over the first 12 years would amount to circa €100 million.
Resumo:
Gemstone Team Organ Storage and Hibernation
Resumo:
The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The action of hyperosmotic nutrient solutions on the depressive effects of carbofuran was studied on spontaneously contracting guinea pig atria. The force and frequency of contraction were recorded using an isotonic lever. Carbofuran 33.0 mu g ml(-1) produced a gradual depressive effect. The time for stabilization of the depressive effect was 6.0+/-2.3 min. After the depressive effect of carbofuran was established, NaCI, mannitol, or urea were introduced into the organ bath to increase the osmolarity of the nutrient solution to about 100 mosmol kg(-1) of water. This resulted in a reversal of the contraction force and frequency to the initial levels. The addition of the osmotic agents at the same concentrations before the addition of 33.0 mu g ml(-1) carbofuran avoided its depressive effect on guinea pig atria. (C) 1996 the Italian Pharmacological Society.
Resumo:
The goal of this study was to evaluate if the immunohistochemical expression of alpha-3 neuronal nicotinic acetylcholine receptor subunit in sympathetic ganglia remains stable after brain death, determining the possible use of sympathetic thoracic ganglia from subjects after brain death as study group. The third left sympathetic ganglion was resected from patients divided in two groups: BD-organ donors after brain death and CON-patients submitted to sympathectomy for hyperhidrosis (control group). Immunohistochemical staining for alpha-3 neuronal nicotinic acetylcholine receptor subunit was performed; strong and weak expression areas were quantified in both groups. The BD group showed strong alpha-3 neuronal nicotinic acetylcholine receptor expression in 6.55% of the total area, whereas the CON group showed strong expression in 5.91% (p = 0.78). Weak expression was found in 6.47% of brain-dead subjects and in 7.23% of control subjects (p = 0.31). Brain death did not affect the results of the immunohistochemical analysis of sympathetic ganglia, and its use as study group is feasible.
Resumo:
BACKGROUND: Optimal allograft protection is essential in lung transplantation to reduce postoperative organ dysfunction. Although intravenous prostanoids are routinely used to ameliorate reperfusion injury, the latest evidence suggests a similar efficacy of inhaled prostacyclin. Therefore, we compared donor lung-pretreatment using inhaled lioprost (Ventavis) with the commonly used intravenous technique. METHODS: Five pig lungs were each preserved with Perfadex and stored for 27 hours without (group 1) or with (group-2, 100 prior aerosolized of iloprost were (group 3) or iloprost (IV). Following left lung transplantation, hemodynamics, Po(2)/F(i)o(2), compliance, and wet-to-dry ratio were monitored for 6 hours and compared to sham controls using ANOVA analysis with repeated measures. RESULTS: The mortality was 100% in group 3. All other animals survived (P < .001). Dynamic compliance and PVR were superior in the endobronchially pretreated iloprost group as compared with untreated organs (P < .05), whereas oxygenation was comparable overall W/D-ratio revealed significantly lower lung water in group 2 (P = .027) compared with group 3. CONCLUSION: Preischemic alveolar deposition of iloprost is superior to IV pretreatment as reflected by significantly improved allograft function. This strategy offers technique to optimize pulmonary preservation.