999 resultados para O-lattice Theory
Resumo:
[spa] En el contexto de los juegos de asignación bilaterales, estudiamos el conjunto de matrices asociadas a mercados de asignación con el mismo nucleo. Se proporcionan condiciones sobre las entradas de la matriz que aseguran que los juegos de asignación asociados tienen el mismo núcleo. Se prueba que este conjunto de matrices que dan lugar al mismo núcleo forman un semirretículo con un número finito de elementos minimales y un único máximo. Se da una caracterización de estos elementos minimales. También se proporciona una condición suficiente para obtener un retículo.
Resumo:
[spa] En el contexto de los juegos de asignación bilaterales, estudiamos el conjunto de matrices asociadas a mercados de asignación con el mismo nucleo. Se proporcionan condiciones sobre las entradas de la matriz que aseguran que los juegos de asignación asociados tienen el mismo núcleo. Se prueba que este conjunto de matrices que dan lugar al mismo núcleo forman un semirretículo con un número finito de elementos minimales y un único máximo. Se da una caracterización de estos elementos minimales. También se proporciona una condición suficiente para obtener un retículo.
Resumo:
Monte Carlo Simulations were carried out using a nearest neighbour ferromagnetic XYmodel, on both 2-D and 3-D quasi-periodic lattices. In the case of 2-D, both the unfrustrated and frustrated XV-model were studied. For the unfrustrated 2-D XV-model, we have examined the magnetization, specific heat, linear susceptibility, helicity modulus and the derivative of the helicity modulus with respect to inverse temperature. The behaviour of all these quatities point to a Kosterlitz-Thouless transition occuring in temperature range Te == (1.0 -1.05) JlkB and with critical exponents that are consistent with previous results (obtained for crystalline lattices) . However, in the frustrated case, analysis of the spin glass susceptibility and EdwardsAnderson order parameter, in addition to the magnetization, specific heat and linear susceptibility, support a spin glass transition. In the case where the 'thin' rhombus is fully frustrated, a freezing transition occurs at Tf == 0.137 JlkB , which contradicts previous work suggesting the critical dimension of spin glasses to be de > 2 . In the 3-D systems, examination of the magnetization, specific heat and linear susceptibility reveal a conventional second order phase transition. Through a cumulant analysis and finite size scaling, a critical temperature of Te == (2.292 ± 0.003) JI kB and critical exponents of 0:' == 0.03 ± 0.03, f3 == 0.30 ± 0.01 and I == 1.31 ± 0.02 have been obtained.
Resumo:
Le sujet de cette thèse est l'étude des progressions arithmétiques dans les nombres entiers. Plus précisément, nous nous intéressons à borner inférieurement v(N), la taille du plus grand sous-ensemble des nombres entiers de 1 à N qui ne contient pas de progressions arithmétiques de 3 termes. Nous allons donc construire de grands sous-ensembles de nombres entiers qui ne contiennent pas de telles progressions, ce qui nous donne une borne inférieure sur v(N). Nous allons d'abord étudier les preuves de toutes les bornes inférieures obtenues jusqu'à présent, pour ensuite donner une autre preuve de la meilleure borne. Nous allons considérer les points à coordonnés entières dans un anneau à d dimensions, et compter le nombre de progressions arithmétiques qu'il contient. Pour obtenir des bornes sur ces quantités, nous allons étudier les méthodes pour compter le nombre de points de réseau dans des sphères à plusieurs dimensions, ce qui est le sujet de la dernière section.
Resumo:
Department of Mathematics, Cochin University of Science and Technology.
Resumo:
The influence of vacancy concentration on the behavior of the three-dimensional random field Ising model with metastable dynamics is studied. We have focused our analysis on the number of spanning avalanches which allows us a clear determination of the critical line where the hysteresis loops change from continuous to discontinuous. By a detailed finite-size scaling analysis we determine the phase diagram and numerically estimate the critical exponents along the whole critical line. Finally, we discuss the origin of the curvature of the critical line at high vacancy concentration.
Resumo:
One can do research in pointfree topology in two ways. The rst is the contravariant way where research is done in the category Frm but the ultimate objective is to obtain results in Loc. The other way is the covariant way to carry out research in the category Loc itself directly. According to Johnstone [23], \frame theory is lattice theory applied to topology whereas locale theory is topology itself". The most part of this thesis is written according to the rst view. In this thesis, we make an attempt to study about 1. the frame counterparts of maximal compactness, minimal Hausdor - ness and reversibility, 2. the automorphism groups of a nite frame and its relation with the subgroups of the permutation group on the generator set of the frame
Resumo:
Sharp transitions are perhaps absent in QCD, so that one looks for physical quantities which may reflect the phase change. One such quantity is the sound velocity which was shown in lattice theory to become zero at the transition point for pure glue. We show that even in a simple bag model the sound velocity goes to zero at temperature T = T(v) not-equal 0 and that the numerical value of this T(v) depends on the nature of the meson. The average thermal energy of mesons goes linearly with T near T(v), with much smaller slope for the pion. The T(v) - s can be connected with the Boltzmann temperatures obtained from transverse momentum spectrum of these mesons in heavy-ion collision at mid-rapidity. It would be interesting to check the presence of different T(v) - s in present day finite T lattice theory.
Resumo:
"Prepared with the assistance of a grant from the Research Corporation."
Resumo:
Mode of access: Internet.
Resumo:
Vita.
Resumo:
"Supported by Contract AT (11-1)-1018 with the U.S. Atomic Engery Commission."
Resumo:
"UILU-ENG 77 1762."
Resumo:
"CU-2-62-NSF G19022-M."
Resumo:
A model for the crystallography and morphology of diffusion-controlled phase transformations - edge-to-edge matching - has been used to predict the orientation relationships (OR) and habit planes of precipitates Mg17Al12 in Mg-Al alloy, Mg24Y5 in Mg-Y alloy and alpha-Mn in Mg-Mn alloy. Based on the crystal structures and lattice parameters only, the model predicts that the possible ORs between Mg17Al12 and Mg matrix are the near Burgers OR, the Potter OR, the Gjonnes-Ostmoe OR and the Crawley OR. In the Mg-Y alloy, the OR between Mg24Y5 precipitates and the Mg matrix is predicted to be the Burgers OR only. The model also predicts that there are no reproducible ORs between alpha-Mn and Mg in the Mg-Mn alloy. Combining the edge-to-edge matching model and W. Zhang's Deltag approach, the habit plane and side facets of the precipitate for each OR can be determined. All the predicted ORs and the corresponding habit planes in Mg-Al and Mg-Y alloys agree very well with the experimental results. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.