994 resultados para Nylon-6


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal properties of short Nylon-6 fiber-reinforced Styrene butadiene rubber (SBR) composites were studied by Thermogravimetric Analysis (TGA). The effect of epoxy-based bonding agent on thermal degradation of the gum and the composites was also studied. The thermal stability of the SBR was enhanced in the presence of Nylon-6 fibers and the stability of the composites increased in the presence of bonding agent. The epoxy resin did not significantly change the thermal stability of SBR gum vulcanizate. Results of kinetic studies showed that the degradation of SBR and the short nylon fiber-reinforced composites with and without bonding agents followed first-order kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis describes the development and evaluation of epoxy resin as interfacial bonding agent for short Nylon-6 fiber elastomer composites. Epoxy resin is well known for its adhesive property. The potential use of it as interfacial bonding agent in short fiber composite is not explored yet. Three rubbers viz., acrylonitrile butadiene rubber (NBR), Neoprene rubber (CR) and styrene butadiene rubber (SBR) were selected and different fiber loading were tried. The resin concentration was optimized for each fiber loading with respect to cure characteristics and mechanical properties. Rheological characteristics and thermal degradation of the composites containing different fiber loading and different resin concentrations were studied in detail to find the effect of epoxy resin bonding system. The mechanical properties were studied in detail. The short Nylon -6 fiber improved most of the mechanical properties of all the three rubbers. Tensile strength showed a dip at 10 phr fiber loading in the case of CR while it was continuously increased with fiber loading in the case of NBR and SBR. All the composites showed anisotropy in mechanical properties. The epoxy resin is an effective bonding agent for short Nylon -6 fiber reinforced NBR and CR composites. Epoxy resin improved tensile strength, abrasion resistance and modulus of these composites. SEM studies confirmed the improved bonding of fiber and matrix in the presence of epoxy bonding agent. Epoxy resin was not effective as bonding agent in the case of short Nylon fiber- SBR composite. From the rheological studies of the composites with and without bonding agent it was observed that all the composite exhibited pseudoplasticity, which decreased with temperature. At higher shear rates all the mixes showed plug flow. SEM pictures showed that maximum orientation of fibers occured at a shear rate, just before the onset of plug flow. The presence of fiber reduced the temperature sensitivity of the flow at a given shear rate. Die swell was reduced in the presence of fiber. Shear viscosity of the composite was increased in the presence of resin. Die swell was increased in the presence of epoxy resin for composites at all shear rates. The thermal degradation of NBR and SBR composites with and without bonding agent followed single step degradation pattern. Thermal stability of the composites was improved in the presence of bonding agent. The degradation of virgin elastomer and the composites followed first order kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis describes studies on development of short Nylon-6 fibre composites based on rubber-toughened polystyrene (PS). Toughening was done using natural rubber (NR), styrene-butadiene rubber (SBR) and whole tyre reclaim (WTR). The composites were prepared by melt mixing in an internal mixer at 170 oC. It was found that the optimum blend ratio was 85/15 for PS/NR, 90/10 for PS/SBR and 90/22 for PS/WTR blends. The effect of dynamic vulcanisation on 85/15 PS/NR and 90/10 PS/SBR blends using dicumyl peroxide (DCP) at various concentrations were also studied. The dynamic crosslinking improved the tensile properties, flexural properties, impact strength and dynamic mechanical properties of both the blends. The effect of unmodified and resorcinol formaldehyde latex (RFL)-coated short Nylon-6 fibres on the mechanical properties, morphology and dynamic mechanical properties of 85/15 PS/NR, 90/10 PS/SBR and 90/22 PS/WTR blends were studied. Fibre loading was varied from 0 to 3 wt.%. For 85/15 PS/NR blend, there was a significant enhancement in tensile properties, flexural properties and impact strength with 1 wt.% of both unmodified and RFL-coated fibres. Dynamic mechanical analysis revealed that the storage modulus at room temperature was maximum at 1 wt.% fiber loading for both composites. The surface functionality of the fiber was improved by giving alkali treatment. Maleic anhydride-grafted-polystyrene (MA-g-PS) was prepared and used as a compatibiliser. The effect of MA-g-PS on the composites was investigated with respect to mechanical properties, morphology and dynamic mechanical properties. The compatibiliser loading was varied from 0 to 2 wt.%. The properties were enhanced significantly in the case of treated and untreated fibre composites at a compatibiliser loading of 0.75 wt.%. SEM analysis confirmed better bonding between the fibre and the matrix. Dynamic mechanical studies showed that the storage modulus at room temperature improved for treated fibre composites in the presence of compatibiliser. In the case of 90/10 PS/SBR composites, the addition of short Nylon-6 fibres at 1 wt.% loading improved the tensile modulus, flexural properties and impact strength while the tensile strength was marginally reduced. The surface treated fibers along with compatibiliser at 0.5 wt.% improved the tensile properties, flexural properties and impact strength. DMA reveale that the storage modulus at room temperature was better for composites containing untreated fibre and the compatibiliser. In the case of 90/22 PS/WTR blends, 1 wt.% unmodified fibre and 0.5 wt.% RFL-coated fibres improved tensile modulus, flexural properties and impact strength. Tensile strength was improved marginally. The surface treatment of Nylon fibre and the addition of compatibiliser at 0.5 wt.% enhanced the tensile properties, flexural properties and impact strength. The dynamic mechanical analysis showed that the storage modulus at room temperature was better for untreated fibre composites in conjunction with the compatibiliser. The thermal stability of PS/NR was studied by TGA. Thermal stability of the blends improved with dynamic vulcanisation and with the incorporation of RFL-coated Nylon fibres. The untreated and partially hydrolyzed fibre composites in conjunction with the compatibiliser enhanced the thermal stability. Kinetic studies showed that the degradation of the blends and the composites followed first order kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes. In this work an attempt has been made to prepare conducting elastomeric composites by the incorporation of PPy and PPy coated short Nylon-6 fiber with insulating elastomer matrices- natural rubber and acrylonitrile butadiene rubber. It is well established that mechanical properties of rubber composites can be greatly improved by adding short fibers. Generally short fiber reinforced rubber composites are popular in industrial fields because of their processing advantages, low cost, and their greatly improved technical properties such as strength, stiffness, modulus and damping. In the present work, PPy coated fiber is expected to improve the mechanical properties of the elastomer-PPy composites, at the same time increasing the conductivity. In addition to determination of DC conductivity and evaluation of mechanical properties, the work aims to study the thermal stability, dielectric properties and electromagnetic interference shielding effectiveness of the composites. The thesis consists of ten chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferrite composites are magnetic composites consisting of fine particles of metal ferrites dispersed in the polymer matrix. These composites have a variety of applications as flexible magnets, pressure/photo sensors and microwave absorbers. Polymers and magnetic materials play a very important role in our day to day life. Both natural and synthetic polymers are today indispensable to mankind. The polymers, which include rubber, plastics and fibers, make life easier and more comfortable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diazirine functionalised fluorenone, 3-[3-(trifluoromethyl)diazirin-3-yl]phenyl-9-oxo-9H-fluorene-2-carboxyla te was synthesised to act as a model compound capable of modifying a wide variety of polymeric substrates. Photochemical activation of the diazirine moiety of the fluorenone derivative was utilised to afford highly reactive carbenes capable of insertion into or addition to a wide variety of functionalities. In this paper the photoinduced attachment of a fluorenone derivative to nylon 6,6 has been studied using UV-visible spectroscopic analysis. Incorporation of the fluorenone chromophore onto the backbone of nylon at different loading levels and after different coating cycles has been investigated and is detailed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In transmission and scanning electron microscopy imaging, the ability to obtain sufficient contrast between the components of a blend when they are both of a similar chemical structure still remains problematic. This paper investigates the domain morphology of a polymer blend containing two polyamides, nylon 6 and the semi-aromatic polyamide poly(m-xylene adipamide) (MXD6), using scanning electron microscopy in backscattered electron imaging mode. The efficiency of three staining agents, ruthenium tetroxide, phosphotungstic acid and silver sulfide, in obtaining optimum phase contrast between the two polymers is discussed.
RESULTS: The use of silver sulfide as a staining agent was found to be a fast and reliable approach which required basic sample preparation and provided excellent compositional contrast between the phases present in the nylon 6/MXD6 blends compared to the other staining agents.
CONCLUSIONS: The technique described in this paper is believed to be a novel and versatile method that has the potential to further improve the ability to study complex polymer blends where one polymer contains an aromatic ring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research project aimed to develop an understanding of the structure-property relationships of nanocomposite materials (injection moulded and fibres) based on nylon 6, MXD6 and their blends, with a layered silicate in combination with polyhedral oligomeric silsesquioxane nanoparticles and SEBS rubber particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nylon is a relatively inert polymer. The ability to easily functionalize nylon with biomolecules will improve the utilization of nylon in biological systems. A potential use of the biofunctionalized nylon scaffolds is in devices for cell therapeutics that can specifically select cells present in small numbers, such as hematopoietic stem cells. This study developed a versatile and simple two-step technique combining oxygen plasma treatment with wet silanization to graft biomolecules onto nylon 6,6 3D porous scaffolds. Scaffolds that were exposed to oxygen plasma exhibited up to 13-fold increase in silane attachment ((3-mercaptopropyl)trimethoxysilane/(3-aminopropyl)trimethoxysilane) compared to untreated scaffolds. To address the limitation of nondestructive characterization of the surface chemistry of 3D scaffolds, fluorescent CdSe/ZnS nanoparticles were used as a reporting tool for -NH(2) functionalized surfaces. Scaffolds that were covalently bound with neutravidin protein remained stable in phosphate buffered saline up to four months. Functionality of the neutravidin-grafted scaffolds was demonstrated by the specific binding of CD4 cells to the scaffold via CD4-specific antibody. Ultimately, these neutravidin-functionalized 3D nylon scaffolds could be easily customized on demand utilizing a plethora of biotinylated biomolecules (antibodies, enzymes and proteins) to select for specific cell of interest. This technique can be extended to other applications, including the enhancement of cell-scaffold interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binary and ternary nanocomposites were produced by incorporating, via melt compounding, two types of octa-and dodecaphenyl substituted polyhedral oligomeric silsesquioxanes (POSS), montmorillonite (MMT), and combinations of POSS with MMT into nylon 6. The tensile, flexural, and dynamic thermo-mechanical properties of these materials were characterized and their structure-property relationships discussed. The results show that the losses in ductility and toughness experienced after inclusion of MMT into nylon 6 can be balanced out by co-mixing MMT with the dodecaphenyl- POSS to produce a ternary nanocomposite. This trend however was less pronounced in the ternary MMT/octaphenyl-POSS system. Analysis of the microstructure organization in these materials using XRD and SEM sheds some light on understanding the differences in behavior. Both types of POSS particles mixed alone in nylon 6 were found to be polydisperse (500 nm to a few microns in size) and locally aggregated, yielding materials with similar mechanical performance. The co-mixing of MMT with the octaphenyl- POSS served to break down the POSS crystal aggregates, enhancing their micro-mechanical reinforcing action. On the other hand, the POSS crystals were not affected in the MMT/dodecaphenyl-POSS system, which led to improving their toughening ability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho foi feito uma avaliação do polipropileno funcionalizado com metacrilato de glicidila (PP-GMA) como agente compatibilizante em blendas reativas de polipropileno e nylon 6. As reações de funcionalização do polipropileno (PP) com metacrilato de glicidila (GMA) foram feitas em estado fundido e os polímeros modificados (PP-GMA) foram utilizados em misturas de PP com nylon 6, para a avaliação das propriedades mecânicas, térmicas e morfológicas da blenda. As blendas foram preparadas variando a concentração de nylon 6 e também do agente compatibilizante. Após o estudo da ação da concentração de nylon 6 e do agente compatibilizante nas blendas, foi verificado o comportamento do PP-GMA com diferentes teores de incorporação molar do GMA no polipropileno. Utilizou-se dois tipos de nylon 6, um deles com maior número de terminais carboxílicos, a fim de avaliar o efeito desses grupos na compatibilidade do sistema. As blendas obtidas foram caracterizadas por calorimetria diferencial de varredura, microscopia eletrônica de varredura e análise das propriedades mecânicas e dinâmico-mecânicas. Os resultados mostraram que a adição do PP-GMA provoca alterações na morfologia das blendas, apresentando uma melhor dispersão e redução no tamanho das partículas dispersas. Além disso, há um aumento nas propriedades mecânicas comparado com as propriedades das blendas não compatibilizadas, que pode ser atribuído a melhor adesão entre as fases para ambos os nylons utilizados neste trabalho. Foi feito estudo comparativo entre as blendas de PP/PP-GMA/Ny6 e PP/PP-MA/Ny6 na proporção de 63/7/30. O efeito do tipo de agente compatibilizante foi caracterizado por calorimetria diferencial de varredura, microscopia eletrônica de varredura e análise das propriedades mecânicas e dinâmico-mecânicas. Os resultados indicaram que o polipropileno modificado com anidrido maleico (PP-MA) mostrou um melhor efeito compatibilizante nesses sistemas. Ou seja, a interação dos terminais amino do nylon foram mais suscetíveis a ação do grupamento anidrido no PP-MA, do que o grupamento epóxido no PP-GMA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer alloys have been used as an alternative to obtain polymeric materials with unique physical properties. Generally, the polymer mixture is incompatible, which makes it necessary to use a compatibilizer to improve the interracial adhesion. Nylon 6 (PA6) is an attractive polymer to use in engineering applications, but it has processing instability and relatively low notched impact strength. In this study, the acrylonitrile-butadiene-styrene (ABS) triblock copolymer was used as an impact modifier for PA6. Poly(methyl methacrylate-co-maleic anyhydride) (MMA-MA) and poly(methyl methacrylate-co-maleic methacrylate) (MMA-GMA) were used as compatibilizers for this blend. The morphology and impact strength of the blends were evaluated as a function of blend composition and the presence of compatibilizers. The blends compatibilized with maleated copolymer exhibited an impact strength up to 800 J/m and a morphology with ABS domains more efi8ciently dispersed. Moderate amounts of MA functionality in the compatibilizer (∼5%) and small amounts of compatibilizer in the blend (∼5%) appear sufficient to improve the impact properties and ABS dispersion. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphological, mechanical and rheological properties of nylon 6/acrylonitrile-butadiene-styrene blends compatibilized with MMA-MA [poly(methyl methacrylate-comaleic anhydride)] copolymers were studied. A twin screw extruder was used for melt-blended the polymers and the injection moulding process was used to mold the samples. The main focus was on nylon 6/ ABS blends compatibilized with one MMA-MA copolymer. This copolymer has PMMA segments that appear to be miscible with the styrene-acrylonitrile (SAN) phase of ABS and the anhydride groups can react with amine end groups of the nylon 6 (Ny6) to form graft copolymers at the interface between Ny6 and ABS rich phases. Tensile and impact and morphological properties were enhanced by the incorporation of this copolymer. Transmission electron microscopy (TEM) observations revealed that the ABS domains are finely dispersed in nylon 6 matrix and led to the lowest ductile-brittle transition temperatures and highest impact properties. It can be concluded that the MMA-MA copolymer is an efficient alternative for the reactive compatibilization and can be used as a compatibilizer for nylon 6/ABS blends.© 2003 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphologies of nylon 6/acrylonitrile-butadiene-styrene blends compatibilized with a methyl methacrylate/maleic anhydride copolymer, with 3-20 wt % maleic anhydride, were examined by transmission electron microscopy. Some staining techniques were employed for identifying the various phases. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable and coarse phase morphology and weak interfaces among the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the acrylonitrile-butadiene-styrene phase and consequently optimized Izod impact properties. © 2003 Wiley Periodicals, Inc.