1000 resultados para Nucleon structure


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The strangeness content of the nucleon is determined from a statistical model using confined quark levels, and is shown to have a good agreement with the corresponding values extracted from experimental data. The quark levels are generated in a Dirac equation that uses a linear confining potential (scalar plus vector). With the requirement that the result for the Gottfried sum rule violation, given by the New Muon Collaboration (NMC), is well reproduced, we also obtain the difference between the structure functions of the proton and neutron, and the corresponding sea quark contributions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present predictions for the spin structure functions of the proton in the framework of a unitary isobar model for one-pion photo- and electroproduction. Our results are compared with recent experimental data from SLAC. The first moments of the calculated structure functions fullfil the Gerasimov-Drell-Hearn and Burkhardt-Cottingham sum rules within an error of typically 5-10%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a phenomenological approach based in the meson cloud model to obtain the strange quark structure function inside a kaon, considering the strange quark asymmetry inside the nucleon. © 2009 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q 2. This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q2 = 12 GeV2. This high-Q 2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. © 2013 World Scientific Publishing Company.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present results on the nucleon scalar, axial, and tensor charges as well as on the momentum fraction, and the helicity and transversity moments. The pion momentum fraction is also presented. The computation of these key observables is carried out using lattice QCD simulations at a physical value of the pion mass. The evaluation is based on gauge configurations generated with two degenerate sea quarks of twisted mass fermions with a clover term. We investigate excited states contributions with the nucleon quantum numbers by analyzing three sink-source time separations. We find that, for the scalar charge, excited states contribute significantly and to a less degree to the nucleon momentum fraction and helicity moment. Our result for the nucleon axial charge agrees with the experimental value. Furthermore, we predict a value of 1.027(62) in the MS¯¯¯¯¯ scheme at 2 GeV for the isovector nucleon tensor charge directly at the physical point. The pion momentum fraction is found to be ⟨x⟩π±u−d=0.214(15)(+12−9) in the MS¯¯¯¯¯ at 2 GeV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct microscopic three-nucleon forces consistent with the Bonn and Nijmegen two-nucleon potentials, and including , Roper, and nucleon-antinucleon excitations. Recent results for the choice of the meson parameters are discussed. The forces are used in Brueckner calculations and the saturation properties of nuclear matter are determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the electric and magnetic strange form factors of the nucleon in the pseudoscalar-vector SU(3) Skyrme model, with special emphasis on the effects of isospin symmetry breaking (ISB). It is found that ISB has a nontrivial effect on the strange vector form factors of the nucleon and its contribution to the nucleon strangeness is significantly larger than one might naively expect. Our calculations and discussions may be of some significance for the experimental extraction of the authentic strangeness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The axially deformed relativistic mean field theory with the force NLSH has been performed in the blocked BCS approximation to investigate the proper-ties and structure of N=Z nuclei from Z=20 to Z=48. Some ground state quantities such as binding energies, quadrupole deformations, one/two-nucleon separation energies, root-mean-squaxe (rms) radii of charge and neutron, and shell gaps have been calculated. The results suggest that large deformations can be found in medium-heavy nuclei with N=Z=38-42. The charge and neutron rms radii increase rapidly beyond the magic number N=Z=28 until Z=42 with increasing nucleon number, which is similar to isotope shift, yet beyond Z=42, they decrease dramatically as the structure changes greatly from Z=42 to Z=43. The evolution of shell gaps with proton number Z can be clearly observed. Besides the appearance of possible new shell closures, some conventional shell closures have been found to disappear in some region. In addition, we found that the Coulomb interaction is not strong enough to breakdown the shell structure of protons in the current region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proton-neutron interaction in determining the evolution of nuclear structure has been studied by using the Brillouin-Wigner perturbation expansion. The particle-hole and particle-particle p-n interactions are unifiedly described in the theory. The obtained formulas of level energies and excitation energies scaled in the small- and large-NpNn limits can well explain the linearity of the extracted proton-neutron interaction energies and the attenuation of the 2(1)(+) excitation energies against the valence nucleon product NpNn for five mass regions from A = 100-200.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential cross sections for the elastic scattering of halo nucleus He-6 on proton target were measured at 82.3 MeV/u. The experimental results are well reproduced by optical model calculations using global potential KD02 with a reduction of the depth of real volume part by a factor of 0.7. A systematic analysis shows that this behavior might be related to the weakly bound property of unstable nuclei.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microscopic three-nucleon force consistent with the Bonn B two-nucleon potential is constructed, which includes Delta(1232), Roper, and nucleon-antinucleon excitation contributions. Recent results for the choice of the meson parameters are discussed. The forces are used in Brueckner calculations and the saturation properties of nuclear matter are determined. At the high densities,the nuclear equation of state and the symmetry energy are calculated. The corresponding neutron star mass-radius relations are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scalar form factor describes modifications induced by the pion over the quark condensate. Assuming that representations produced by chiral perturbation theory can be pushed to high values of negative-t, a region in configuration space is reached (r < R similar to 0.5 fm) where the form factor changes sign, indicating that the condensate has turned into empty space. A simple model for the pion incorporates this feature into density functions. When supplemented by scalar-meson excitations, it yields predictions close to empirical values for the mean square radius (< r(2)>(pi)(S) = 0.59 fm(2)) and for one of the low energy constants ((l) over bar (4) = 4.3), with no adjusted parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The light anti-quark and quark distribution in the proton, as well as the neutron to proton ratio of the structure functions, extracted from experimental data, are well fitted by a, statistical model of linear-confined quarks. The parameters of the model are given by a temperature, which is adjusted by the Gottfried sum-rule violation, and two chemical potentials given by the corresponding up (u) and down (d) quark normalizations in the nucleon. The quark energy levels are generated by a relativistic linear-confined scalar plus vector potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neutron-to-proton ratio of the structure functions, F(2)(n)/F(2)(p), as well as the corresponding difference F(2)(p)-F(2)(n) are obtained within a statistical quark model for the nucleon, where the quark energy levels are given by a central linear confining potential.