984 resultados para Nuclear pressure vessels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maintaining the structural health of prestressed concrete nuclear containments is a key element in ensuring nuclear reactors are capable of meeting their safety requirements. This paper discusses the attachment, fabrication and characterisation of optical fibre strain sensors suitable for the prestress monitoring of irradiated steel prestressing tendons. The all-metal fabrication and welding process allowed the instrumented strand to simultaneously monitor and apply stresses up to 1300 MPa (80% of steel's ultimate tensile strength). There were no adverse effects to the strand's mechanical properties or integrity. After sensor relaxation through cyclic stress treatment, strain transfer between the optical fibre sensors and the strand remained at 69%. The fibre strain sensors could also withstand the non-axial forces induced as the strand was deflected around a 4.5 m bend radius. Further development of this technology has the potential to augment current prestress monitoring practices, allowing distributed measurements of short- and long-term prestress losses in nuclear prestressed-concrete vessels. © 2014 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundamental investigations in ultrasonics in India date back to the early 20th century. But, fundamental and applied research in the field of nondestructive evaluation (NDE) came much later. In the last four decades it has grown steadily in academic institutions, national laboratories and industry. Currently, commensurate with rapid industrial growth and realisation of the benefits of NDE, the activity is becoming much stronger, deeper, broader and very wide spread. Acoustic Emission (AE) is a recent entry into the field of nondestructive evaluation. Pioneering efforts in India in AE were carried out at the Indian Institute of Science in the early 1970s. The nuclear industry was the first to utilise it. Current activity in AE in the country spans materials research, incipient failure detection, integrity evaluation of structures, fracture mechanics studies and rock mechanics. In this paper, we attempt to project the current scenario in ultrasonics and acoustic emission research in India.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper establishes the design requirements for the development and testing of direct supercritical carbon dioxide (sCO2) solar receivers. Current design considerations are based on the ASME Boiler and Pressure Vessel Code (BPVC). Section I (BPVC) considers typical boilers/superheaters (i.e. fired pressure vessels) which work under a constant low heat flux. Section VIII (BPVC) considers pressure vessels with operating pressures above 15 psig 2 bar] (i.e. unfired pressure vessels). Section III, Division I - Subsection NH (BPVC) considers a more detailed stress calculation, compared to Section I and Section VIII, and requires a creep-fatigue analysis. The main drawback from using the BPVC exclusively is the large safety requirements developed for nuclear power applications. As a result, a new set of requirements is needed to perform detailed thermal-structural analyses of solar thermal receivers subjected to a spatially-varying, high-intensity heat flux. The last design requirements document of this kind was an interim Sandia report developed in 1979 (SAND79-8183), but it only addresses some of the technical challenges in early-stage steam and molten-salt solar receivers but not the use of sCO2 receivers. This paper presents a combination of the ASME BPVC and ASME B31.1 Code modified appropriately to achieve the reliability requirements in sCO(2) solar power systems. There are five main categories in this requirements document: Operation and Safety, Materials and Manufacturing, Instrumentation, Maintenance and Environmental, and General requirements. This paper also includes the modeling guidelines and input parameters required in computational fluid dynamics and structural analyses utilizing ANSYS Fluent, ANSYS Mechanical, and nCode Design Life. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of sCO(2) receivers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 15Kh2MFA steel is a kind of Cr-Mo-V family steels and can be used in turbines for energy generation, pressure vessels, nuclear reactors or applications where the range of temperature that the material works is between 250 to 450°C. To improve the properties of these steels increasing the service temperature and the thermal stability is add a second particle phase. These particles can be oxides, carbides, nitrites or even solid solution of some chemical elements. On this way, this work aim to study the effect of addition of 3wt% of niobium carbide in the metallic matrix of 15Kh2MFA steel. Powder metallurgy was the route employed to produce this metallic matrix composite. Two different milling conditions were performed. Condition 1: milling of pure 15Kh2MFA steel and condition 2: milling of 15Kh2MFA steel with addition of niobium carbide. A high energy milling was carried out during 5 hours. Then, these two powders were sintered in a vacuum furnace (10-4torr) at 1150 and 1250°C during 60 minutes. After sintering the samples were normalized at 950°C per 3 minutes followed by air cooling to obtain a desired microstructure. Results show that the addition of niobium carbide helps to mill faster the particles during the milling when compared with that steel without carbide. At the sintering, the niobium carbide helps to sinter increasing the density of the samples reaching a maximum density of 7.86g/cm³, better than the melted steel as received that was 7,81g/cm³. In spite this good densification, after normalizing, the niobium carbide don t contributed to increase the microhardness. The best microhardness obtained to the steel with niobium carbide was 156HV and to pure 15Kh2MFA steel was 212HV. It happened due when the niobium carbide is added to the steel a pearlitic structure was formed, and the steel without niobium carbide submitted to the same conditions reached a bainitic structure

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Postweld heat treatment (PWHT) is frequently applied to steel pressure vessels, following the requirements of the ASME code (section VIII), which establishes the parameters of the PWHT based on the thickness and chemical composition of the welded section. This work shows the results of an analysis undertaken on a sample of ASTM A537 C1 steel subjected to qualifying welding procedure tests including PWHT (650 degreesC/5 h), the results obtained showed that this PWHT practice promoted a reduction in the mechanical properties of the base metal and the heat-affected zone (HAZ).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este trabajo tiene como objeto caracterizar las capas de óxido formadas en el acero AISI 316L en función de la deformación del material y de su contenido en Cr a distintas temperaturas. Este acero se utiliza en los internos de las vasijas de los reactores nucleares de agua ligera, y un mejor conocimiento de su proceso de oxidación puede suponer un avance en el desarrollo de los reactores de cuarta generación. Para ello se realizaron ensayos termogravimétricos y se analizaron los resultados con técnicas de microscopía óptica y electrónica, espectrometría y difracción de rayos X. Los resultados obtenidos muestran la similitud en morfología y composición elemental de los óxidos formados en muestras de este acero con distintos grados de deformación y contenido en Cr y las diferencias resultantes en cuanto a la ganancia de masa. Abstract The object of this work is to characterize the oxide layers formed in AISI 316L steel based on the material deformation and its Cr content at various temperatures. This kind of steel is used in the inside elements of the light water nuclear reactor vessels and further knowledge in the oxidation process could mean a greater development in fourth generation reactors. Thermogravimetric tests were undertaken for this purpose, leading to the results analysis with the use of optical and electronic microscopic techniques as well as spectrometry and X–ray diffraction. The obtained results show the resemblance in the morphology and elemental composition of the oxides formed in samples of this steel with different deformation and Cr content degrees. The results also showed differences in the mass gain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Selected unclassified reports, supplementing those abstracted in TID-3059, which were available in TISE files on July 1, 1956, on welding and brazing of materials of interest to nuclear technology, such as Al, Be, Hf, Mo, Th, Ti, Zr, stainless steels, high-temperature alloys, pressure vessels, and heat exchangers, are annotated. Author, subject, and report number indexes are included. 127 references.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Subject no. 18550. Stress analysis."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 15Kh2MFA steel is a kind of Cr-Mo-V family steels and can be used in turbines for energy generation, pressure vessels, nuclear reactors or applications where the range of temperature that the material works is between 250 to 450°C. To improve the properties of these steels increasing the service temperature and the thermal stability is add a second particle phase. These particles can be oxides, carbides, nitrites or even solid solution of some chemical elements. On this way, this work aim to study the effect of addition of 3wt% of niobium carbide in the metallic matrix of 15Kh2MFA steel. Powder metallurgy was the route employed to produce this metallic matrix composite. Two different milling conditions were performed. Condition 1: milling of pure 15Kh2MFA steel and condition 2: milling of 15Kh2MFA steel with addition of niobium carbide. A high energy milling was carried out during 5 hours. Then, these two powders were sintered in a vacuum furnace (10-4torr) at 1150 and 1250°C during 60 minutes. After sintering the samples were normalized at 950°C per 3 minutes followed by air cooling to obtain a desired microstructure. Results show that the addition of niobium carbide helps to mill faster the particles during the milling when compared with that steel without carbide. At the sintering, the niobium carbide helps to sinter increasing the density of the samples reaching a maximum density of 7.86g/cm³, better than the melted steel as received that was 7,81g/cm³. In spite this good densification, after normalizing, the niobium carbide don t contributed to increase the microhardness. The best microhardness obtained to the steel with niobium carbide was 156HV and to pure 15Kh2MFA steel was 212HV. It happened due when the niobium carbide is added to the steel a pearlitic structure was formed, and the steel without niobium carbide submitted to the same conditions reached a bainitic structure