979 resultados para Nu Sigma Nu
Resumo:
Search for low-spin signature inversion in the pi i(13/2) circle times nu i(13/2) bands in odd-odd Au-182,Au-184,Au-186 has been conducted through the standard in-beam gamma-spectroscopy techniques via the Sm-152(Cl-35,5n) Au-182, Yb-172(F-19,5n) (186)An, and Tb-159(Si-29,4n) (184)An reactions, respectively. The pi i(13/2) circle times nu i(13/2) bands in these three nuclei have been identified and extended up to high-spin states. In particular, the inter-band connection between the pi i(13/2) circle times nu i(13/2) band and the ground-state band in Au-184 has been established, leading to a firm spin-and-parity assignment for the pi i(13/2) circle times nu i(13/2) band. The low-spin signature inversion is found in the pi i(13/2) circle times nu i(13/2) bands according to our spin-assignment and-the signature crossing observed at high-spin states.
Resumo:
Excited states in Tl-188,Tl-190 have been studied experimentally by means of in-beam gamma spectroscopy techniques, and resulted in the identification of a strongly coupled band based on the pi h(9/2) circle times nu i(13/2) configuration with oblate deformation. The oblate band in doubly odd Tl nuclei shows low-spin signature inversion. It is the first experimental observation of low-spin signature inversion for a band associated with the oblate pi h(9/2) circle times nu i(13/2) configuration.
Resumo:
Excited states in Tl-188 have been studied experimentally using the Gd-157(Cl-35;4n) reaction at a beam energy of 170 MeV. A rotational band built on the pi h(9/2) x nu i(13/2) configuration with oblate deformation has been established for Tl-188. Based on the structure systematics of the oblate pi h(9/2) x nu i(13/2) bands in the heavier odd-odd Tl nuclei, we have tentatively proposed spin values for the new band in Tl-188. The pi h(9/2) x nu i(13/2) oblate band in Tl-188 shows low-spin signature inversion, and it can be interpreted qualitatively by the two-quasiparticle plus rotor model including a J-dependent p-n residual interaction.
Resumo:
High spin states in Tl-188 have been investigated via the Gd-157(Cl-35,4n) reaction at beam energy of 170 MeV. A rotational band built on the pi h(9/2) circle times nu(13/2) configuration with oblate deformation has been established. Considering the similarity between the band structure observed in odd-odd Tl nuclei, spin values have been tentatively proposed for the new band in Tl-188. The pi h(9/2) circle times nu(13/2) oblate band in Tl-188 shows low-spin signature inversion, and it can be interpreted qualitatively by the two quasiparticle plus rotor model including a J-dependent p-n residual interaction.
Resumo:
High-spin Level structure of Tl-188 has been studied via Gd-157 (Cl-35,4n) fusion-evaporation reaction at beam energy of 170MeV. A rotational band built on the pi h(9/2) circle times nu i(13/2) configuration with oblate deformation has been established. Spin values have been proposed to the pi h(9/2) circle times nu i(13/2) oblate band based on the similarities between the oblate band of Tl-188 and those in odd-odd Tl190-200. With the spin assignments, the low-spin signature inversion has been revealed for the pi h(9/2) circle times nu i(13/2) oblate band of Tl-188. The low-spin signature inversion can be interpreted qualitatively in the framework of the quasi-particles plus rotor model including a J dependent p-n residual interaction.