979 resultados para Nso Murine Myeloma Cells
Resumo:
Cells of most tissues require adhesion to a surface to grow. However, for hematopoietic cells, both stimulation and inhibition of proliferation by adhesion to extracellular matrix components have been described. Furthermore, it has been suggested that progenitor cells from chronic myelogenous leukemia show decreased β1 integrin-mediated adhesion to fibronectin, resulting in increased proliferation and abnormal trafficking. However, we show here that the chronic myelogenous leukemia-specific fusion protein p210bcr/abl stimulates the expression of α5β1 integrins and induces adhesion to fibronectin when expressed in the myeloid cell line 32D. Moreover, proliferation of both p210bcr/abl-transfected 32D (32Dp210) cells and untransfected 32D cells is stimulated by immobilized fibronectin. Cell cycle analysis revealed that nonadherent 32D and 32Dp210 cells are arrested in late G1 or early S phase, whereas the adherent fractions continue cycling. Although both adherent and nonadherent p210bcr/abl-transfected and parental 32D cells express equal amounts of cyclin A, a protein necessary for cell cycle progression at the G1/S boundary, cyclin A complexes immunoprecipitated from 32D cells cultured on immobilized fibronectin were found to be catalytically inactive in nonadherent but not in adherent cells. In addition, as compared with untransfected 32D cells, cyclin A immunoprecipitates from 32Dp210 cells exhibited a greatly elevated kinase activity and remained partially active irrespective of the adhesion status. The lack of cyclin A/cyclin-dependent kinase (CDK) 2 activity in nonadherent 32D cells appeared to result from increased expression and cyclin A complex formation of the CDK inhibitor p27Kip1. Taken together, our results indicate that adhesion stimulates cell cycle progression of hematopoietic cells by down-regulation of p27Kip1, resulting in activation of cyclin A/CDK2 complexes and subsequent transition through the G1/S adhesion checkpoint.
Resumo:
This study demonstrates, by using neutral comet assay and pulsed field gel electrophoresis, that hyperosmotic stress causes DNA damage in the form of double strand breaks (dsb). Different solutes increase the rate of DNA dsb to different degrees at identical strengths of hyperosmolality. Hyperosmolality in the form of elevated NaCl (HNa) is most potent in this regard, whereas hyperosmolality in the form of elevated urea (HU) does not cause DNA dsb. The amount of DNA dsb increases significantly as early as 15 min after the onset of HNa. By using neutral comet and DNA ladder assays, we show that this rapid induction of DNA damage is not attributable to apoptosis. We demonstrate that renal inner medullary cells are able to efficiently repair hyperosmotic DNA damage within 48 h after exposure to hyperosmolality. DNA repair correlates with cell survival and is repressed by 25 μM LY294002, an inhibitor of DNA-activated protein kinases. These results strongly suggest that the hyperosmotic stress resistance of renal inner medullary cells is based not only on adaptations that protect cellular proteins from osmotic damage but, in addition, on adaptations that compensate DNA damage and maintain genomic integrity.
Resumo:
Hexamethylenebisacetamide-induced terminal differentiation of Friend virus-transformed murine erythroleukemia (MEL) cells can be inhibited by okadaic acid, an inhibitor of type 1 and type 2A protein phosphatases. The inhibition is shown to be correlated with prevention of dephosphorylation of retinoblastoma protein (pRB) in cells and bypass of G1 prolongation in the cell cycle. These results suggest that pRB-mediated G1 prolongation is necessary for MEL cells to commit to terminal differentiation. However, further experiments demonstrate that the simple cell cycle exit is not sufficient for commitment to terminal differentiation. Induction of dephosphorylation of pRB and subsequent G1 prolongation by forskolin does not lead MEL cells to differentiate. Additional pRB has been expressed in MEL cells by transfection with a neo-resistant plasmid containing RB cDNA under the control of a cytomegalovirus promoter. Exogenously expressed pRB is hyperphosphorylated in logarithmically growing MEL cells without any noticeable change in growth rate between the transfected cell line and the parental cell line. This result suggests that pRB in MEL cells is regulated by protein kinases and protein phosphatases and not by transcription.
Resumo:
RNA interference (RNAi) has been shown to be a valuable tool to specifically target gene expression in a number of organisms becoming an indispensable weapon in the arsenal in functional genomics. In this study, we demonstrate that streptolysin-O (SLO) reversible permeabilisation is an efficient method to deliver small interfering RNAs (siRNAs) to hard-to-transfect human myeloma cell lines. We used published, pre-validated siRNAs for ERK2 and non-silencing siRNA control. We transfected siRNAs into human myeloma cell lines using SLO reversible permeabilisation method. Flow cytometry and western blot analysis were performed to assess the effect of SLO on transfection efficiency and ERK2 knockdown. These experiments demonstrate that SLO reversible permeabilisation method is an efficient and easy-to-use method to deliver siRNAs into human myeloma cell lines. Optimised SLO permeabilisation method showed to transfect >80% of JIM-3, H929, RPM18226 and U266 cells, with minimal effect on cell viability (<10%) and cell cycle. Equally important, SLO permeabilisation induced a substantial knockdown of ERK2 at the protein level. These studies demonstrate that reversible SLO permeabilisation can successfully be applied to hard-to-transfect human myeloma cell lines to effectively silence genes. (C) 2008 Published by Elsevier B.V.
Resumo:
mRNAs specifying immunoglobulin mu and delta heavy chains are encoded by a single large, complex transcription unit (mu + delta gene). The transcriptional activity of delta gene segments in terminally differentiated, IgM-secreting B lymphocytes is 10-20 times lower than in earlier B-lineage cells expressing delta mRNA. We find that transcription of the mu + delta gene in IgM-secreting murine myeloma cells terminates within a region of 500-1000 nucleotides immediately following the mu membrane (mu m) polyadenylylation site. Transcription decreases only minimally through this region in murine cell lines representative of earlier stages in B-cell development. A DNA fragment containing the mu m polyadenylylation signal gives protein-DNA complexes with different mobilities in gel retardation assays with nuclear extracts from myeloma cells than with nuclear extracts from earlier B-lineage cells. However, using a recently developed "footprinting" procedure in which protein-DNA complexes resolved in gel retardation assays are subjected to nucleolytic cleavage while still in the polyacrylamide gel, we find that the DNA sequences protected by factors from the two cell types are indistinguishable. The factor-binding site on the DNA is located 5' of the mu m polyadenylylation signal AATAAA and includes the 15-nucleotide-long A + T-rich palindrome CTGTAAACAAATGTC. This type of palindromic binding site exhibits orientation-dependent activity consistent with the reported properties of polymerase II termination signals. This binding site is followed by two sets of directly repeated DNA sequences with different helical conformation as revealed by their reactivity with the chemical nuclease 1,10-phenanthroline-copper. The close proximity of these features to the signals for mu m mRNA processing may reflect a linkage of the processes of developmentally regulated mu m polyadenylylation and transcription termination.
Resumo:
Natural killer (NK) cells express C-type lectin-like receptors, encoded in the NK gene complex, that interact with major histocompatibility complex class I and either inhibit or activate functional activity. Human NK cells express heterodimers consisting of CD94 and NKG2 family molecules, whereas murine NK cells express homodimers belonging to the Ly-49 family. The corresponding orthologues for other species, however, have not been described. In this report, we used probes derived from the expressed sequence tag database to clone C57BL/6-derived cDNAs homologous to human NKG2-D and CD94. Among normal tissues, murine NKG2-D and CD94 transcripts are highly expressed only in activated NK cells, including both Ly-49A+ and Ly-49A− subpopulations. Additionally, mNKG2-D is expressed in murine NK cell clones KY-1 and KY-2, whereas mCD94 expression is observed only in KY-1 cells but not KY-2. Last, we have finely mapped the physical location of the Cd94 (centromeric) and Nkg2d (telomeric) genes between Cd69 and the Ly49 cluster in the NK complex. Thus, these data indicate the expanding complexity of the NK complex and the corresponding repertoire of C-type lectin-like receptors on murine NK cells.
Resumo:
In previous studies we showed that 5 days of treatment with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) mobilized murine repopulating cells to the peripheral blood (PB) and that these cells could be efficiently transduced with retroviral vectors. We also found that, 7-14 days after cytokine treatment, the repopulating ability of murine bone marrow (BM) increased 10-fold. In this study we examined the efficiency of gene transfer into cytokine-primed murine BM cells and extended our observations to a nonhuman primate autologous transplantation model. G-CSF/SCF-primed murine BM cells collected 7-14 days after cytokine treatment were equivalent to post-5-fluorouracil BM or G-CSF/SCF-mobilized PB cells as targets for retroviral gene transfer. In nonhuman primates, CD34-enriched PB cells collected after 5 days of G-CSF/SCF treatment and CD34-enriched BM cells collected 14 days later were superior targets for retroviral gene transfer. When a clinically approved supernatant infection protocol with low-titer vector preparations was used, monkeys had up to 5% of circulating cells containing the vector for up to a year after transplantation. This relatively high level of gene transfer was confirmed by Southern blot analysis. Engraftment after transplantation using primed BM cells was more rapid than that using steady-state bone marrow, and the fraction of BM cells saving the most primitive CD34+/CD38- or CD34+/CD38dim phenotype increased 3-fold. We conclude that cytokine priming with G-CSF/SCF may allow collection of increased numbers of primitive cells from both the PB and BM that have improved susceptibility to retroviral transduction, with many potential applications in hematopoietic stem cell-directed gene therapy.
Resumo:
The aim of this study was to determine the role of CD4 and CD8 cells on specific antibody production by murine Peyer's patch (PP) cells after oral immunization with Actinomyces viscosus in mice. Female DBA/2 mice were orally immunized with three low doses of heat-killed A. viscosus. Sham-immunized mice served as a control group. Mice were depleted of CD4 or CD8 cells by intraperitoneal injection of anti-CD4 or anti-CD8 antibodies daily for 3 days before oral immunization. One week after the last oral immunization, PPs were removed and cell suspensions were cultured with A. viscosus. Specific antibody production in the culture supernatants was assessed by enzyme-linked immunosorbent assay. The results showed that oral immunization with A. viscosus induced a predominant specific immunoglobulin A (IgA) response by PP cells and, to a lesser extent, IgM antibodies. Depletion of CD4 but not CD8 cells suppressed the production of specific antibodies. These results suggest that oral immunization with low doses of A. viscosus may induce the production of specific antibodies by murine PP cells in a CD4-cell-dependent fashion.
Resumo:
The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.
Resumo:
Several activating mutations have recently been described in the common beta subunit for the human interleukin(IL)-3, IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors (h beta c), Two of these, FI Delta and 1374N, result, respectively, in a 37-amino acid duplication and an isoleucine-to-asparagine substitution in the extracellular domain. A third, V449E, leads to valine-to-glutamic acid substitution in the transmembrane domain. Previous studies have shown that when expressed in murine hemopoietic cells in vitro, the extracellular mutants can confer factor independence on only the granulocyte-macrophage lineage while the transmembrane mutant can do so to all cell types of the myeloid and erythroid compartments. To further study the signaling properties of the constitutively active hpc mutants, we have used novel murine hemopoietic cell lines, which we describe in this report. These lines, FDB1 and FDB2, proliferate in murine IL-3 and undergo granulocyte-macrophage differentiation in response to murine GM-CSF, We find that while the transmembrane mutant, V449E, confers factor-independent proliferation on these cell lines, the extracellular hpc mutants promote differentiation. Hence, in addition to their ability to confer factor independence on distinct cell types, transmembrane and extracellular activated h beta c mutants deliver distinct signals to the same cell type. Thus, the FDB cell lines, in combination with activated h beta c mutants, constitute a powerful new system to distinguish between signals that determine hemopoietic proliferation or differentiation. (C) 2000 by The American Society of Hematology.
Resumo:
To date, several activating mutations have been discovered in the common signal-transducing subunit (h beta c) of the receptors for human granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Two of these, Fl Delta and 1374N, result in a 37 amino acid duplication and a single amino acid substitution in the extracellular domain of h beta c, respectively. A third, V449E, results in a single amino acid substitution in the transmembrane domain, Previous studies comparing the activity of these mutants in different hematopoietic cell lines imply that the transmembrane and extracellular mutations act by different mechanisms and suggest the requirement for cell type-specific molecules in signalling. To characterize the ability of these mutant hpc subunits to mediate growth and differentiation of primary cells and hence investigate their oncogenic potential, we have expressed all three mutants in primary murine hematopoietic cells using retroviral transduction. It is shown that, whereas expression of either extracellular hpc mutant confers factor-independent proliferation and differentiation on cells of the neutrophil and monocyte lineages only, expression of the transmembrane mutant does so on these lineages as well as the eosinophil, basophil, megakaryocyte, and erythroid lineages, Factor-independent myeloid precursors expressing the transmembrane mutant display extended proliferation in liquid culture and in some cases yielded immortalized cell lines. (C) 1997 by The American Society of Hematology.
Resumo:
The cDNAs encoding wild type (WT) human receptor tyrosine kinase c-Kit and a constitutively activated mutant, V816Kit, were introduced into granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent early murine hemopoietic cells, which had been transformed with activated Myb, WTKit cells were able to grow in the presence of the human ligand for Kit, stem cell factor (SCF), but displayed reduced growth and clonogenic potential in either SCF or GM-CSF compared with the parental cells in GM-CSF. In contrast, V816Kit cells grew without factor at a higher rate than the parental cells in GM-CSF and displayed increased clonogenicity. Dissection of the growth characteristics in liquid culture showed that in the presence of appropriate factors, the different populations had similar proliferation rates, but that V816Kit profoundly increased cell survival compared with WTKit or parental cells, This suggests that the signals transduced by WTKit activated with SCF, and by V816Kit, were not identical. Also, WTKit and V816Kit-expressing cells both varied from the early myeloid progenitor phenotype of the parental cells and gave rise to a small number of large to giant adherent cells that expressed macrophage (alpha-naphthyl acetate) esterase and neutrophil (naphtol-AS-D-chloroacetate) esterase, were highly phagocytic and phenotypically resembled histiocytes. Thus, WTKit activated by SCF and V816Kit were able to induce differentiation in a proportion of Myb-transformed myeloid cells. The factor independent V816Kit cells, unlike the parental and WTKit expressing cells, were shown to produce tumors of highly mitotic, invasive cells at various stages of differentiation in syngeneic mice. These results imply that constitutively activated Kit can promote the development of differentiated myeloid tumors and that its oncogenic effects are not restricted to lineages (mast cell and B-cell acute lymphoblastic leukemia), which have been reported previously. Furthermore, the mixed populations of cells in culture and in the tumors phenotypically resembled the leukemic cells from patients with monocytic leukemia with histiocytic differentiation (acute myeloid leukemia-M5c), a newly proposed subtype of myeloid leukemia. (C) 1997 by The American Society of Hematology.
Resumo:
Infection of non-adherent TG180 murine sarcoma cells with Toxoplasma gondii was compared, at the ultrastructural level, in both in vivo and in vitro conditions. Suspensions of 3.0 x 10(6) TG180 cells infected in vitro with 1.0 x 10(6) parasites of the RH strain were harvested between the first and 6th day post-infection and processed for transmission electron microscopy. In vivo infection was made by intraperitoneal inoculation in mice of 1.0 x 10(6) TG180 cells, that were co-inoculated with a parasite suspension at the same cell concentration. Cells were harvested 10, 20, 30 min and 24, 48 h post-inoculation and processed for transmission electron microscopy at the same conditions of the in vitro culture. It was observed TG180 murine sarcoma cells with intense and equivalent intracellular parasitism in both conditions. Host cells with parasitophorous vacuoles containing up to 16 parasites, as well as parasites undergoing mitoses or presenting a bradyzoite-like morphology, were frequently seen in both culture methods.
Resumo:
CD1d tetramers loaded with alpha-galactosylceramide (alpha-GalCer) bind selectively to mouse invariant Valpha14 (Valpha14i) NKT cells and their human counterparts. Whereas tetramer binding strictly depends on the expression of a Valpha14-Jalpha18 chain in murine NKT cells, the associated beta-chain (typically expressing Vbeta8.2 or Vbeta7) appears not to influence tetramer binding. In this study, we describe novel alpha-GalCer-loaded mouse and human CD1d-IgG1 dimers, which revealed an unexpected influence of the TCR-beta chain on the avidity of CD1d:alpha-GalCer binding. A subset of Valpha14i NKT cells clearly discriminated alpha-GalCer bound to mouse or human CD1d on the basis of avidity differences conferred by the Vbeta domain of the TCR-beta chain, with Vbeta8.2 conferring higher avidity binding than Vbeta7.