944 resultados para Nonlinear source terms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jet noise reduction is an important goal within both commercial and military aviation. Although large-scale numerical simulations are now able to simultaneously compute turbulent jets and their radiated sound, lost-cost, physically-motivated models are needed to guide noise-reduction efforts. A particularly promising modeling approach centers around certain large-scale coherent structures, called wavepackets, that are observed in jets and their radiated sound. The typical approach to modeling wavepackets is to approximate them as linear modal solutions of the Euler or Navier-Stokes equations linearized about the long-time mean of the turbulent flow field. The near-field wavepackets obtained from these models show compelling agreement with those educed from experimental and simulation data for both subsonic and supersonic jets, but the acoustic radiation is severely under-predicted in the subsonic case. This thesis contributes to two aspects of these models. First, two new solution methods are developed that can be used to efficiently compute wavepackets and their acoustic radiation, reducing the computational cost of the model by more than an order of magnitude. The new techniques are spatial integration methods and constitute a well-posed, convergent alternative to the frequently used parabolized stability equations. Using concepts related to well-posed boundary conditions, the methods are formulated for general hyperbolic equations and thus have potential applications in many fields of physics and engineering. Second, the nonlinear and stochastic forcing of wavepackets is investigated with the goal of identifying and characterizing the missing dynamics responsible for the under-prediction of acoustic radiation by linear wavepacket models for subsonic jets. Specifically, we use ensembles of large-eddy-simulation flow and force data along with two data decomposition techniques to educe the actual nonlinear forcing experienced by wavepackets in a Mach 0.9 turbulent jet. Modes with high energy are extracted using proper orthogonal decomposition, while high gain modes are identified using a novel technique called empirical resolvent-mode decomposition. In contrast to the flow and acoustic fields, the forcing field is characterized by a lack of energetic coherent structures. Furthermore, the structures that do exist are largely uncorrelated with the acoustic field. Instead, the forces that most efficiently excite an acoustic response appear to take the form of random turbulent fluctuations, implying that direct feedback from nonlinear interactions amongst wavepackets is not an essential noise source mechanism. This suggests that the essential ingredients of sound generation in high Reynolds number jets are contained within the linearized Navier-Stokes operator rather than in the nonlinear forcing terms, a conclusion that has important implications for jet noise modeling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Continuum, partial differential equation models are often used to describe the collective motion of cell populations, with various types of motility represented by the choice of diffusion coefficient, and cell proliferation captured by the source terms. Previously, the choice of diffusion coefficient has been largely arbitrary, with the decision to choose a particular linear or nonlinear form generally based on calibration arguments rather than making any physical connection with the underlying individual-level properties of the cell motility mechanism. In this work we provide a new link between individual-level models, which account for important cell properties such as varying cell shape and volume exclusion, and population-level partial differential equation models. We work in an exclusion process framework, considering aligned, elongated cells that may occupy more than one lattice site, in order to represent populations of agents with different sizes. Three different idealizations of the individual-level mechanism are proposed, and these are connected to three different partial differential equations, each with a different diffusion coefficient; one linear, one nonlinear and degenerate and one nonlinear and nondegenerate. We test the ability of these three models to predict the population level response of a cell spreading problem for both proliferative and nonproliferative cases. We also explore the potential of our models to predict long time travelling wave invasion rates and extend our results to two dimensional spreading and invasion. Our results show that each model can accurately predict density data for nonproliferative systems, but that only one does so for proliferative systems. Hence great care must be taken to predict density data for with varying cell shape.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nonlinear vibration analysis is performed using a C-0 assumed strain interpolated finite element plate model based on Reddy's third order theory. An earlier model is modified to include the effect of transverse shear variation along the plate thickness and Von-Karman nonlinear strain terms. Monte Carlo Simulation with Latin Hypercube Sampling technique is used to obtain the variance of linear and nonlinear natural frequencies of the plate due to randomness in its material properties. Numerical results are obtained for composite plates with different aspect ratio, stacking sequence and oscillation amplitude ratio. The numerical results are validated with the available literature. It is found that the nonlinear frequencies show increasing non-Gaussian probability density function with increasing amplitude of vibration and show dual peaks at high amplitude ratios. This chaotic nature of the dispersion of nonlinear eigenvalues is also r

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Attempts in the past to model the irregularities of the solar cycle (such as the Maunder minimum) were based on studies of the nonlinear feedback of magnetic fields on the dynamo source terms. Since the alpha-coefficient is obtained by averaging over the turbulence, it is expected to have stochastic fluctuations, and we show that these fluctuations can explain the irregularities of the solar cycle in a more satisfactory way. We solve the dynamo equations in a slab with a single mode, taking the alpha-coefficient to be constant in space but fluctuating stochastically in time with some given amplitude and given correlation time. The same level of percentile fluctuations (about 10 %) produces no effect on an alpha-omega dynamo, but makes an alpha-2 dynamo completely chaotic. The level of irregularities in an alpha-2-omega dynamo qualitatively agrees with the solar behavior, reinforcing the conclusion of Choudhuri (1990a) that the solar dynamo is of the alpha-2-omega-type. The irregularities are found to increase on increasing either the amplitude or the correlation time of the stochastic fluctuations. The alpha-quenching mechanism tends to make the system stable against the irregularities and hence it is inferred that the alpha-quenching should not be too strong so that the irregularities are not completely suppressed. We also present a simple-minded analysis to understand why the stochastic fluctuations in the alpha-omega, alpha-2-omega and alpha-2 regimes have such different outcomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Girsanov linearization method (GLM), proposed earlier in Saha, N., and Roy, D., 2007, ``The Girsanov Linearisation Method for Stochastically Driven Nonlinear Oscillators,'' J. Appl. Mech., 74, pp. 885-897, is reformulated to arrive at a nearly exact, semianalytical, weak and explicit scheme for nonlinear mechanical oscillators under additive stochastic excitations. At the heart of the reformulated linearization is a temporally localized rejection sampling strategy that, combined with a resampling scheme, enables selecting from and appropriately modifying an ensemble of locally linearized trajectories while weakly applying the Girsanov correction (the Radon-Nikodym derivative) for the linearization errors. The semianalyticity is due to an explicit linearization of the nonlinear drift terms and it plays a crucial role in keeping the Radon-Nikodym derivative ``nearly bounded'' above by the inverse of the linearization time step (which means that only a subset of linearized trajectories with low, yet finite, probability exceeds this bound). Drift linearization is conveniently accomplished via the first few (lower order) terms in the associated stochastic (Ito) Taylor expansion to exclude (multiple) stochastic integrals from the numerical treatment. Similarly, the Radon-Nikodym derivative, which is a strictly positive, exponential (super-) martingale, is converted to a canonical form and evaluated over each time step without directly computing the stochastic integrals appearing in its argument. Through their numeric implementations for a few low-dimensional nonlinear oscillators, the proposed variants of the scheme, presently referred to as the Girsanov corrected linearization method (GCLM), are shown to exhibit remarkably higher numerical accuracy over a much larger range of the time step size than is possible with the local drift-linearization schemes on their own.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The formulation of the carrier-phase momentum and enthalpy source terms in mixed Lagrangian-Eulerian models of particle-laden flows is frequently reported inaccurately. Under certain circumstances, this can lead to erroneous implementations, which violate physical laws. A particle- rather than carrier-based approach is suggested for a consistent treatment of these terms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An aerodynamic sound source extraction from a general flow field is applied to a number of model problems and to a problem of engineering interest. The extraction technique is based on a variable decomposition, which results to an acoustic correction method, of each of the flow variables into a dominant flow component and a perturbation component. The dominant flow component is obtained with a general-purpose Computational Fluid Dynamics (CFD) code which uses a cell-centred finite volume method to solve the Reynolds-averaged Navier–Stokes equations. The perturbations are calculated from a set of acoustic perturbation equations with source terms extracted from unsteady CFD solutions at each time step via the use of a staggered dispersion-relation-preserving (DRP) finite-difference scheme. Numerical experiments include (1) propagation of a 1-D acoustic pulse without mean flow, (2) propagation of a 2-D acoustic pulse with/without mean flow, (3) reflection of an acoustic pulse from a flat plate with mean flow, and (4) flow-induced noise generated by the an unsteady laminar flow past a 2-D cavity. The computational results demonstrate the accuracy for model problems and illustrate the feasibility for more complex aeroacoustic problems of the source extraction technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study ordinary nonlinear singular differential equations which arise from steady conservation laws with source terms. An example of steady conservation laws which leads to those scalar equations is the Saint–Venant equations. The numerical solution of these scalar equations is sought by using the ideas of upwinding and discretisation of source terms. Both the Engquist–Osher scheme and the Roe scheme are used with different strategies for discretising the source terms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the dynamical response of a coupled oscillator is investigated, taking in consideration the nonlinear behavior of a SMA spring coupling the two oscillators. Due to the nonlinear coupling terms, the system exhibits both regular and chaotic motions. The Poincaré sections for different sets of coupling parameters are verified. © 2011 World Scientific Publishing Company.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fractional FitzHugh–Nagumo monodomain model with zero Dirichlet boundary conditions is presented, generalising the standard monodomain model that describes the propagation of the electrical potential in heterogeneous cardiac tissue. The model consists of a coupled fractional Riesz space nonlinear reaction-diffusion model and a system of ordinary differential equations, describing the ionic fluxes as a function of the membrane potential. We solve this model by decoupling the space-fractional partial differential equation and the system of ordinary differential equations at each time step. Thus, this means treating the fractional Riesz space nonlinear reaction-diffusion model as if the nonlinear source term is only locally Lipschitz. The fractional Riesz space nonlinear reaction-diffusion model is solved using an implicit numerical method with the shifted Grunwald–Letnikov approximation, and the stability and convergence are discussed in detail in the context of the local Lipschitz property. Some numerical examples are given to show the consistency of our computational approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a derivative-free two-stage extended Kalman filter (2-EKF) especially suited for state and parameter identification of mechanical oscillators under Gaussian white noise. Two sources of modeling uncertainties are considered: (1) errors in linearization, and (2) an inadequate system model. The state vector is presently composed of the original dynamical/parameter states plus the so-called bias states accounting for the unmodeled dynamics. An extended Kalman estimation concept is applied within a framework predicated on explicit and derivative-free local linearizations (DLL) of nonlinear drift terms in the governing stochastic differential equations (SDEs). The original and bias states are estimated by two separate filters; the bias filter improves the estimates of the original states. Measurements are artificially generated by corrupting the numerical solutions of the SDEs with noise through an implicit form of a higher-order linearization. Numerical illustrations are provided for a few single- and multidegree-of-freedom nonlinear oscillators, demonstrating the remarkable promise that 2-EKF holds over its more conventional EKF-based counterparts. DOI: 10.1061/(ASCE)EM.1943-7889.0000255. (C) 2011 American Society of Civil Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high-order accurate finite-difference scheme, the upwind compact method, is proposed. The 2-D unsteady incompressible Navier-Stokes equations are solved in primitive variables. The nonlinear convection terms in the governing equations are approximated by using upwind biased compact difference, and other spatial derivative terms are discretized by using the fourth-order compact difference. The upwind compact method is used to solve the driven flow in a square cavity. Solutions are obtained for Reynolds numbers as high as 10000. When Re less than or equal to 5000, the results agree well with those in literature. When Re = 7500 and Re = 10000, there is no convergence to a steady laminar solution, and the flow becomes unsteady and periodic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

高超声速三维化学非平衡绕流流场的数值模拟中,在计算初期容易发生组元密度出现负值的非物理现象,另外源项的刚性是影响计算稳定性和收敛速度的主要原因.根据源项线性化理论,采用2种源项线性化方法处理化学反应源项.一种为根据流场内化学反应物理规律构造的线性化方法,该方法能抑制在计算过程中组元密度出现负值现象,提高了计算稳定性,加速了收敛速度.同时采用了时间预处理矩阵的线性化方法,较好地解决了非平衡化学反应与流场耦合的刚性问题.证明了所构造源项线性化方法相容性.数值实验表明该方法有效地避免了源项计算中密度出负的问题,加快了计算的收敛速度,从而提高了计算效率.