999 resultados para Nonequilibrium Transport
Resumo:
We analyze the publicly released outputs of the simulations performed by climate models (CMs) in preindustrial (PI) and Special Report on Emissions Scenarios A1B (SRESA1B) conditions. In the PI simulations, most CMs feature biases of the order of 1 W m −2 for the net global and the net atmospheric, oceanic, and land energy balances. This does not result from transient effects but depends on the imperfect closure of the energy cycle in the fluid components and on inconsistencies over land. Thus, the planetary emission temperature is underestimated, which may explain the CMs' cold bias. In the PI scenario, CMs agree on the meridional atmospheric enthalpy transport's peak location (around 40°N/S), while discrepancies of ∼20% exist on the intensity. Disagreements on the oceanic transport peaks' location and intensity amount to ∼10° and ∼50%, respectively. In the SRESA1B runs, the atmospheric transport's peak shifts poleward, and its intensity increases up to ∼10% in both hemispheres. In most CMs, the Northern Hemispheric oceanic transport decreases, and the peaks shift equatorward in both hemispheres. The Bjerknes compensation mechanism is active both on climatological and interannual time scales. The total meridional transport peaks around 35° in both hemispheres and scenarios, whereas disagreements on the intensity reach ∼20%. With increased CO 2 concentration, the total transport increases up to ∼10%, thus contributing to polar amplification of global warming. Advances are needed for achieving a self-consistent representation of climate as a nonequilibrium thermodynamical system. This is crucial for improving the CMs' skill in representing past and future climate changes.
Resumo:
Most models designed to study the bidirectional movement of cargos as they are driven by molecular motors rely on the idea that motors of different polarities can be coordinated by external agents if arranged into a motor-cargo complex to perform the necessary work Gross, Hither and yon: a review of bidirectional microtubule-based transport (Gross in Phys. Biol. 1:R1-R11, 2004). Although these models have provided us with important insights into these phenomena, there are still many unanswered questions regarding the mechanisms through which the movement of the complex takes place on crowded microtubules. For example (i) how does cargo-binding affect motor motility? and in connection with that-(ii) how does the presence of other motors (and also other cargos) on the microtubule affect the motility of the motor-cargo complex? We discuss these questions from a different perspective. The movement of a cargo is conceived here as a hopping process resulting from the transference of cargo between neighboring motors. In the light of this, we examine the conditions under which cargo might display bidirectional movement even if directed by motors of a single polarity. The global properties of the model in the long-time regime are obtained by mapping the dynamics of the collection of interacting motors and cargos into an asymmetric simple exclusion process (ASEP) which can be resolved using the matrix ansatz introduced by Derrida (Derrida and Evans in Nonequilibrium Statistical Mechanics in One Dimension, pp. 277-304, 1997; Derrida et al. in J. Phys. A 26: 1493-1517, 1993).
Resumo:
In this paper we study how deterministic features presented by a system can be used to perform direct transport in a quasisymmetric potential and weak dissipative system. We show that the presence of nonhyperbolic regions around acceleration areas of the phase space plays an important role in the acceleration of particles giving rise to direct transport in the system. Such an effect can be observed for a large interval of the weak asymmetric potential parameter allowing the possibility to obtain useful work from unbiased nonequilibrium fluctuation in real systems even in a presence of a quasisymmetric potential.
Resumo:
Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane. The results indicate that, despite the theoretical inconsistency between the counter-diffusion assumption and the salt-diffusion conditions of the experiments, the predictive ability of solute transport theory based on the assumption of counter diffusion is not significantly different from that based on the assumption of salt diffusion, provided that the input parameters used in each theory are derived under the same assumption inherent in the theory. Nonetheless, salt-diffusion theory is fundamentally correct and, therefore, is more appropriate for problems involving salt diffusion in clay membranes. Finally, the fact that solute diffusion cannot occur in an ideal or perfect membrane is not explicitly captured in any of the theoretical expressions for total solute flux in clay membranes, but rather is generally accounted for via inclusion of an effective porosity, n(e), or a restrictive tortuosity factor, tau(r), in the formulation of Fick's first law for diffusion. Both n(e) and tau(r) have been correlated as a linear function of membrane efficiency. This linear correlation is supported theoretically by pore-scale modeling of solid-liquid interactions, but experimental support is limited. Additional data are needed to bolster the validity of the linear correlation for clay membranes. Copyright 2012 Elsevier B.V. All rights reserved.
Resumo:
Extensive research conducted over the past several decades has indicated that semipermeable membrane behavior (i.e., the ability of a porous medium to restrict the passage of solutes) may have a significant influence on solute migration through a wide variety of clay-rich soils, including both natural clay formations (aquitards, aquicludes) and engineered clay barriers (e.g., landfill liners and vertical cutoff walls). Restricted solute migration through clay membranes generally has been described using coupled flux formulations based on nonequilibrium (irreversible) thermodynamics. However, these formulations have differed depending on the assumptions inherent in the theoretical development, resulting in some confusion regarding the applicability of the formulations. Accordingly, a critical review of coupled flux formulations for liquid, current, and solutes through a semipermeable clay membrane under isothermal conditions is undertaken with the goals of explicitly resolving differences among the formulations and illustrating the significance of the differences from theoretical and practical perspectives. Formulations based on single-solute systems (i.e., uncharged solute), single-salt systems, and general systems containing multiple cations or anions are presented. Also, expressions relating the phenomenological coefficients in the coupled flux equations to relevant soil properties (e.g., hydraulic conductivity and effective diffusion coefficient) are summarized for each system. A major difference in the formulations is shown to exist depending on whether counter diffusion or salt diffusion is assumed. This difference between counter and salt diffusion is shown to affect the interpretation of values for the effective diffusion coefficient in a clay membrane based on previously published experimental data. Solute transport theories based on both counter and salt diffusion then are used to re-evaluate previously published column test data for the same clay membrane. The results indicate that, despite the theoretical inconsistency between the counter-diffusion assumption and the salt-diffusion conditions of the experiments, the predictive ability of solute transport theory based on the assumption of counter diffusion is not significantly different from that based on the assumption of salt diffusion, provided that the input parameters used in each theory are derived under the same assumption inherent in the theory. Nonetheless, salt-diffusion theory is fundamentally correct and, therefore, is more appropriate for problems involving salt diffusion in clay membranes. Finally, the fact that solute diffusion cannot occur in an ideal or perfect membrane is not explicitly captured in any of the theoretical expressions for total solute flux in clay membranes, but rather is generally accounted for via inclusion of an effective porosity, ne, or a restrictive tortuosity factor, tr, in the formulation of Fick's first law for diffusion. Both ne and tr have been correlated as a linear function of membrane efficiency. This linear correlation is supported theoretically by pore-scale modeling of solid-liquid interactions, but experimental support is limited. Additional data are needed to bolster the validity of the linear correlation for clay membranes.
Resumo:
We study a model of nonequilibrium quantum transport of particles and energy in a many-body system connected to mesoscopic Fermi reservoirs (the so-called meso-reservoirs). We discuss the conservation laws of particles and energy within our setup as well as the transport properties of quasi-periodic and disordered chains.
Resumo:
We present here a tractable theory of transport of simple fluids in cylindrical nanopores, which is applicable over a wide range of densities and pore sizes. In the Henry law low-density region the theory considers the trajectories of molecules oscillating between diffuse wall collisions, while at higher densities beyond this region the contribution from viscous flow becomes significant and is included through our recent approach utilizing a local average density model. The model is validated by means of equilibrium as well nonequilibrium molecular dynamics simulations of supercritical methane transport in cylindrical silica pores over a wide range of temperature, density, and pore size. The model for the Henry law region is exact and found to yield an excellent match with simulations at all conditions, including the single-file region of very small pore size where it is shown to provide the density-independent collective transport coefficient. It is also shown that in the absence of dispersive interactions the model reduces to the classical Knudsen result, but in the presence of such interactions the latter model drastically overpredicts the transport coefficient. For larger micropores beyond the single-file region the transport coefficient is reduced at high density because of intermolecular interactions and hindrance to particle crossings leading to a large decrease in surface slip that is not well represented by the model. However, for mesopores the transport coefficient increases monotonically with density, over the range studied, and is very well predicted by the theory, though at very high density the contribution from surface slip is slightly overpredicted. It is also seen that the concept of activated diffusion, commonly associated with diffusion in small pores, is fundamentally invalid for smooth pores, and the apparent activation energy is not simply related to the minimum pore potential or the adsorption energy as generally assumed. (C) 2004 American Institute of Physics.
Resumo:
We examine the transport of methane in microporous carbon by performing equilibrium and nonequilibrium molecular dynamics simulations over a range of pore sizes, densities, and temperatures. We interpret these simulation results using two models of the transport process. At low densities, we consider a molecular flow model, in which intermolecular interactions are neglected, and find excellent agreement between transport diffusion coefficients determined from simulation, and those predicted by the model. Simulation results indicate that the model can be applied up to fluid densities of the order to 0.1-1 nm(-3). Above these densities, we consider a slip flow model, combining hydrodynamic theory with a slip condition at the solid-fluid interface. As the diffusion coefficient at low densities can be accurately determined by the molecular flow model, we also consider a model where the slip condition is supplied by the molecular flow model. We find that both density-dependent models provide a useful means of estimating the transport coefficient that compares well with simulation. (C) 2004 American Institute of Physics.
Resumo:
We examine here the relative importance of different contributions to transport of light gases in single walled carbon nanotubes, using methane and hydrogen as examples. Transport coefficients at 298 K are determined using molecular dynamics simulation with atomistic models of the nanotube wall, from which the diffusive and viscous contributions are resolved using a recent approach that provides an explicit expression for the latter. We also exploit an exact theory for the transport of Lennard-Jones fluids at low density considering diffuse reflection at the tube wall, thereby permitting the estimation of Maxwell coefficients for the wall reflection. It is found that reflection from the carbon nanotube wall is nearly specular, as a result of which slip flow dominates, and the viscous contribution is small in comparison, even for a tube as large as 8.1 nm in diameter. The reflection coefficient for hydrogen is 3-6 times as large as that for methane in tubes of 1.36 nm diameter, indicating less specular reflection for hydrogen and greater sensitivity to atomic detail of the surface. This reconciles results showing that transport coefficients for hydrogen and methane, obtained in simulation, are comparable in tubes of this size. With increase in adsorbate density, the reflection coefficient increases, suggesting that adsorbate interactions near the wall serve to roughen the local potential energy landscape perceived by fluid molecules.
Resumo:
This article provides a review of the recent theory of transport in nanopores developed in the author's laboratory. In particular the influence of fluid-solid interactions on the transport coefficient is examined, showing that such interactions reduce the value of the coefficient by almost an order of magnitude in comparison to the Knudsen theory for non-interacting systems. The activation energy and potential energy barriers for diffusion in smooth pores with a one-dimensional potential energy profile are also discussed, indicating the inadequacy of the commonly used assumption of proportionality between the activation energy and heat of adsorption or the minimum pore potential energy. A further feature affected by fluid-solid interactions is the nature of the reflection of fluid molecules colliding with a pore wall surface, varying from being nearly specular - such as in carbon nanotubes - to nearly diffuse for amorphous solids. Diffuse reflection leads to momentum loss and reduced transport coefficients. However, fluid-solid interactions do not affect the transport coefficient in the single-file diffusion regime when the surface reflection is diffuse, and the transport coefficient in this case is largely independent of the adsorbed density.
Resumo:
The predictions of nonequilibrium radiation in the shock layer for a Titan aerocapture aeroshell vary significantly amongst Computational Fluid Dynamics (CFD) analyses and are limited by the physical models of the nonequilibrium flow processes. Of particular interest are nonequilibrium processes associated with the CN molecule which is a strong radiator. It is necessary to have experimental data for these radiating shock layers which will allow for validation of the CFD models. This paper describes the development of a test flow condition for subscale aeroshell models in a superorbital expansion tunnel. We discuss the need for a Titan gas condition that closely simulates the atmospheric composition and present experimental data of the free stream test flow conditions. Furthermore, we present finite-rate CFD calculations of the facility to estimate the remaining free stream conditions, which cannot be directly measured during experiments.