877 resultados para Non-stationary iterative method
Resumo:
This paper explores the homogeneity of the functional form, the parameters, and the turning point, when appropriate, of the relationship between CO2 emissions and economic activity for 31 countries (28 OECD, Brazil, China, and India) during the period 1950 to 2006 using cointegration analysis. With a sample highly overlapped over time between countries, the result reveals that the homogeneity across countries is rejected, both in functional form and in the parameters of long term relationship. This confirms the relevance of considering the heterogeneity in exploring the relationship between air pollution and economic activity to avoid spurious parameter estimates and infer a wrong behavior of the functional form, which could lead to induce that the relationship is reversed when in fact it is direct.
Resumo:
A new parametric minimum distance time-domain estimator for ARFIMA processes is introduced in this paper. The proposed estimator minimizes the sum of squared correlations of residuals obtained after filtering a series through ARFIMA parameters. The estimator iseasy to compute and is consistent and asymptotically normally distributed for fractionallyintegrated (FI) processes with an integration order d strictly greater than -0.75. Therefore, it can be applied to both stationary and non-stationary processes. Deterministic components are also allowed in the DGP. Furthermore, as a by-product, the estimation procedure provides an immediate check on the adequacy of the specified model. This is so because the criterion function, when evaluated at the estimated values, coincides with the Box-Pierce goodness of fit statistic. Empirical applications and Monte-Carlo simulations supporting the analytical results and showing the good performance of the estimator in finite samples are also provided.
Resumo:
This paper considers a job search model where the environment is notstationary along the unemployment spell and where jobs do not lastforever. Under this circumstance, reservation wages can be lower thanwithout separations, as in a stationary environment, but they can alsobe initially higher because of the non-stationarity of the model. Moreover,the time-dependence of reservation wages is stronger than with noseparations. The model is estimated structurally using Spanish data forthe period 1985-1996. The main finding is that, although the decrease inreservation wages is the main determinant of the change in the exit ratefrom unemployment for the first four months, later on the only effect comesfrom the job offer arrival rate, given that acceptance probabilities areroughly equal to one.
Resumo:
There are several determinants that influence household location decisions. More concretely, recent economic literature assigns an increasingly important role to the variables governing quality of life. Nevertheless, the spatial stationarity of the parameters is implicitly assumed in most studies. Here we analyse the role of quality of life in urban economics and test for the spatial stationarity of the relationship between city growth and quality of life.
Resumo:
We consider an online learning scenario in which the learner can make predictions on the basis of a fixed set of experts. The performance of each expert may change over time in a manner unknown to the learner. We formulate a class of universal learning algorithms for this problem by expressing them as simple Bayesian algorithms operating on models analogous to Hidden Markov Models (HMMs). We derive a new performance bound for such algorithms which is considerably simpler than existing bounds. The bound provides the basis for learning the rate at which the identity of the optimal expert switches over time. We find an analytic expression for the a priori resolution at which we need to learn the rate parameter. We extend our scalar switching-rate result to models of the switching-rate that are governed by a matrix of parameters, i.e. arbitrary homogeneous HMMs. We apply and examine our algorithm in the context of the problem of energy management in wireless networks. We analyze the new results in the framework of Information Theory.
Resumo:
The use of Bayesian inference in the inference of time-frequency representations has, thus far, been limited to offline analysis of signals, using a smoothing spline based model of the time-frequency plane. In this paper we introduce a new framework that allows the routine use of Bayesian inference for online estimation of the time-varying spectral density of a locally stationary Gaussian process. The core of our approach is the use of a likelihood inspired by a local Whittle approximation. This choice, along with the use of a recursive algorithm for non-parametric estimation of the local spectral density, permits the use of a particle filter for estimating the time-varying spectral density online. We provide demonstrations of the algorithm through tracking chirps and the analysis of musical data.
Resumo:
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.
Resumo:
A parameter-free variational iterative method is proposed for scattering problems. The present method yields results that are far better, in convergence, stability and precision, than any other momentum space method. Accurate result is obtained for the atomic exponential (Yukawa) potential with an estimated error of less than 1 in 1015 (1010) after some 13 (10) iterations.
Resumo:
This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.
Resumo:
In this paper, we present approximate distributions for the ratio of the cumulative wavelet periodograms considering stationary and non-stationary time series generated from independent Gaussian processes. We also adapt an existing procedure to use this statistic and its approximate distribution in order to test if two regularly or irregularly spaced time series are realizations of the same generating process. Simulation studies show good size and power properties for the test statistic. An application with financial microdata illustrates the test usefulness. We conclude advocating the use of these approximate distributions instead of the ones obtained through randomizations, mainly in the case of irregular time series. (C) 2012 Elsevier B.V. All rights reserved.