963 resultados para Non-respiratory
Resumo:
Aim: To explore the perception of palliative care provision for people with non-malignant respiratory disease from the perspective of bereaved caregivers.
Background: It is recognized that the majority of patients diagnosed with a malignant disease will have access to palliative care provision. However, it is less clear if the same standards of palliative care are available to those with non-malignant respiratory disease in Northern Ireland and the Republic of Ireland.
Design: A qualitative study based on broad interpretivism.
Methods: This research is a PhD study funded by the Department of Education and Learning in Northern Ireland (awarded February 2011). Data collection will consist of two stages; interviews with 20 bereaved caregivers of people who have died 3–18 months previously with a diagnosis of non-malignant respiratory disease and four focus groups with healthcare professionals involved in the care of this client group. This study will be carried out at four healthcare sites across the Island of Ireland. The data will be analysed using thematic content analysis. Research Ethics committee approval was obtained (March 2012).
Discussion: This research will explore the experiences of patients with Chronic Obstructive Pulmonary Disease, Interstitial Lung Disease and Bronchiectasis and their caregivers from the perspective of the bereaved caregiver. The outcomes of this study will provide a critical first step in the development of more responsive palliative care for this client group and have important implications for future practice and policy in the palliative care provided to this client group.
Resumo:
Non-typable Haemophilus influenzae (NTHi) is a common commensal of the human nasopharynx, but causes opportunistic infection when the respiratory tract is compromised by infection or disease. The ability of NTHi to invade epithelial cells has been described, but the underlying molecular mechanisms are poorly characterized. We previously determined that NTHi promotes phosphorylation of the serine-threonine kinase Akt in A549 human lung epithelial cells, and that Akt phosphorylation and NTHi cell invasion are prevented by inhibition of phosphoinositide 3-kinase (PI3K). Because PI3K-Akt signalling is associated with several host cell networks, the purpose of the current study was to identify eukaryotic molecules important for NTHi epithelial invasion. We found that inhibition of Akt activity reduced NTHi internalization; differently, bacterial entry was increased by phospholipase C?1 inhibition but was not affected by protein kinase inhibition. We also found that a5 and ß1 integrins, and the tyrosine kinases focal adhesion kinase and Src, are important for NTHi A549 cell invasion. NTHi internalization was shown to be favoured by activation of Rac1 guanosine triphosphatase (GTPase), together with the guanine nucleotide exchange factor Vav2 and the effector Pak1. Also, Pak1 might be associated with inactivation of the microtubule destabilizing agent Op18/stathmin, to facilitate microtubule polymerization and NTHi entry. Conversely, inhibition of RhoA GTPase and its effector ROCK increased the number of internalized bacteria. Src and Rac1 were found to be important for NTHi-triggered Akt phosphorylation. An increase in host cyclic AMP reduced bacterial entry, which was linked to protein kinase A. These findings suggest that NTHi finely manipulates host signalling molecules to invade respiratory epithelial cells.
Resumo:
Introduction and aims: The role bacteria play in the development and progression of Chronic Obstructive Pulmonary Disease (COPD) is unclear. We used culture-independent methods to describe differences and/or similarities in microbial communities in the lower airways of patients with COPD, healthy non-smokers and smokers.
Methods: Bronchial wash samples were collected from patients with COPD (GOLD 1–3; n = 18), healthy non-smokers (HV; n = 11) and healthy smokers (HS; n = 8). Samples were processed using the Illumina MiSeq platform. The Shannon-Wiener Index (SW) of diversity, lung obstruction (FEV1/FVC ratio) and ordination by Non-Metric Multidimensional Scaling (NMDS) on Bray-Curtis dissimilarity indices were analysed to evaluate how samples were related. Principal component analysis (PCA) was performed to assess the effect specific taxa had within each cohort. Characteristics of each cohort are shown in Table 1.
Results: There was no difference in taxa richness between cohorts (range: 69–71; p = 0.954). Diversity (SW Index) was significantly lower in COPD samples compared to samples from HV and HS (p = 0.009 and p = 0.033, respectively). There was no significant difference between HV and HS (p = 0.186). The FEV1/FVC ratio was significantly lower for COPD compared to HV (p = 9*10–8) and HS (p = 2*10–6), respectively. NMDS analysis showed that communities belonging to either of the healthy groups were more similar to each other than they were to samples belonging to the COPD group. PCA analysis showed that members of Streptococcus sp. and Haemophilus sp. had the largest effect on the variance explained in COPD. In HS, Haemophilus sp., Fusobaterium sp., Actinomyces sp., Prevotella sp. and Veillonella sp. had the largest effect on the variance explained, while in HV Neisseria sp., Porphyromonas sp., Actinomyces sp., Atopobium sp., Prevotella and Veillonella sp. had the largest effect on the variance explained.
Conclusions: The study demonstrates that microbial communities in the lower airways of patients with COPD are significantly different from that seen in healthy comparison groups. Patients with COPD had lower microbial diversity than either of the healthy comparison groups, higher relative abundance of members of Streptococcus sp. and lower relative abundance of a number of key anaerobes.Characteristics
Resumo:
Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease affecting the swine industry worldwide. The etiological agent, PRRS virus (PRRSV), possesses a RNA viral genome with nine open reading frames (ORFs). The ORF1a and ORF1b replicase-associated genes encode the polyproteins pp1a and pp1ab, respectively. The pp1a is processed in nine non-structural proteins (nsps): nsp1a, nsp1b, and nsp2 to nsp8. Proteolytic cleavage of pp1ab generates products nsp9 to nsp12. The proteolytic pp1a cleavage products process and cleave pp1a and pp1ab into nsp products. The nsp9 to nsp12 are involved in virus genome transcription and replication. The 30 end of the viral genome encodes four minor and three major structural proteins. The GP2a, GP3 and GP4 (encoded by ORF2a, 3 and 4), are glycosylated membrane associated minor structural proteins. The fourth minor structural protein, the E protein (encoded by ORF2b), is an unglycosylated membrane associated protein. The viral envelope contains two major structural proteins: a glycosylated major envelope protein GP5 (encoded by ORF5) and an unglycosylated membrane M protein (encoded by ORF6). The third major structural protein is the nucleocapsid N protein (encoded by ORF7). All PRRSV non-structural and structural proteins are essential for virus replication, and PRRSV infectivity is relatively intolerant to subtle changes within the structural proteins. PRRSV virulence is multigenic and resides in both the non-structural and structural viral proteins. This review discusses the molecular characteristics, biological and immunological functions of the PRRSV structural and nsps and their involvement in the virus pathogenesis.
Resumo:
Objective: To identify differences in the evolution of children with non-severe acute lower respiratory tract infection between those with and without radiographically diagnosed pneumonia. Design: Prospective cohort study. Setting: A public university pediatric hospital in Salvador, Northeast Brazil. Patients: Children aged 2-59 months. Methods: By active surveillance, the pneumonia cases were prospectively identified in a 2-year period. Each case was followed-up for changes in various clinical symptoms and signs. Demographic, clinical and radiographic data were recorded in standardized forms. Exclusion was due to antibiotic use in the previous 48 hours, signs of severe disease, refusal to give informed consent, underlying chronic illness, hospitalization in the previous 7 days or amoxicillin allergy. Chest X-ray (CXR) was later read by at least 2 independent pediatric radiologists. Main Outcome Measures: Radiographic diagnosed pneumonia based on agreed detection of pulmonary infiltrate or pleural effusion in 2 assessments. Results: A total of 382 patients receiving amoxicillin were studied, of whom, 372 (97.4%) had concordant radiographic diagnosis which was pneumonia (52%), normal CXR (41%). and others (7%). By multivariate analysis, age (OR=1.03; 95% CI: 1.02-1.05), disease >= 5days (OR = 1.04; 95% CI: 1.001-1.08), reduced pulmonary expansion (OR = 3.3; 95% CI: 1.4-8.0), absence of wheezing (OR = 0.5; 95% CI: 0.3-0.9), crackles on admission (OR = 2.0; 95% CI: 1.2-3.5), inability to drink on day 1 (OR = 4.2; 95% CI: 1.05-17.3), consolidation percussion sign (OR = 7.0; 95% CI: 1.5-32.3), tachypnea (OR = 2.0; 95% CI: 1.09-3.6) and fever (OR = 3.6; 95% CI: 1.4-9.4) on day 2 were independently associated with pneumonia. The highest positive predictive value was at the 2nd day of evolution for tachypnea (71.0%) and fever (81.1%). Conclusion: Persistence of fever or tachypnea up to the second day of amoxicillin treatment is predictive of radiographically diagnosed pneumonia among children with non-severe lower respiratory tract diseases.
Resumo:
Abstract Background Lower respiratory tract infection (LRTI) is a major cause of pediatric morbidity and mortality, especially among non-affluent communities. In this study we determine the impact of respiratory viruses and how viral co-detections/infections can affect clinical LRTI severity in children in a hospital setting. Methods Patients younger than 3 years of age admitted to a tertiary hospital in Brazil during the months of high prevalence of respiratory viruses had samples collected from nasopharyngeal aspiration. These samples were tested for 13 different respiratory viruses through real-time PCR (rt-PCR). Patients were followed during hospitalization, and clinical data and population characteristics were collected during that period and at discharge to evaluate severity markers, especially length of hospital stay and oxygen use. Univariate regression analyses identified potential risk factors and multivariate logistic regressions were used to determine the impact of specific viral detections as well as viral co-detections in relation to clinical outcomes. Results We analyzed 260 episodes of LRTI with a viral detection rate of 85% (n = 222). Co-detection was observed in 65% of all virus-positive episodes. The most prevalent virus was Respiratory Syncytial Virus (RSV) (54%), followed by Human Metapneumovirus (hMPV) (32%) and Human Rhinovirus (HRV) (21%). In the multivariate models, infants with co-detection of HRV + RSV stayed 4.5 extra days (p = 0.004), when compared to infants without the co-detection. The same trends were observed for the outcome of days of supplemental oxygen use. Conclusions Although RSV remains as the main cause of LRTI in infants our study indicates an increase in the length of hospital stay and oxygen use in infants with HRV detected by RT-PCR compared to those without HRV. Moreover, one can speculate that when HRV is detected simultaneously with RSV there is an additive effect that may be reflected in more severe clinical outcome. Also, our study identified a significant number of children infected by recently identified viruses, such as hMPV and Human Bocavirus (HBov), and this is a novel finding for poor communities from developing countries.
Resumo:
This study investigated whether the epidemiology of penicillin-non-susceptible pneumococci (PNSP) colonising small children correlated with the biannual epidemic activity of respiratory syncytial virus (RSV). Colonisation rates and the prevalence of PNSP among paediatric outpatients aged < 5 years was analysed between January 1998 and September 2003 using an established national surveillance network. Resistance trends were investigated using time-series analysis to assess the correlation with the biannual pattern of RSV infections and national sales of oral paediatric formulations of antibiotics and antibiotic prescriptions to children aged < 5 years for acute respiratory tract infections. PNSP rates exhibited a biannual cycle in phase with the biannual seasonal RSV epidemics (p < 0.05). Resistance rates were higher during the winter seasons of 1998-1999 (20.1%), 2000-2001 (16.0%) and 2002-2003 (19.1%), compared with the winter seasons of 1997-1998 (8.2%), 1999-2000 (11.6%) and 2001-2002 (9.5%). Antibiotic sales and prescriptions showed regular peaks during each winter, with no significant correlation with the biannual pattern of RSV activity and seasonal trends of PNSP. RSV is an important determinant of the spread of PNSP and must be considered in strategies aimed at antimicrobial resistance control.
Resumo:
The ability of anesthetic agents to provide adequate analgesia and sedation is limited by the ventilatory depression associated with overdosing in spontaneously breathing patients. Therefore, quantitation of drug induced ventilatory depression is a pharmacokinetic-pharmacodynamic problem relevant to the practice of anesthesia. Although several studies describe the effect of respiratory depressant drugs on isolated endpoints, an integrated description of drug induced respiratory depression with parameters identifiable from clinically available data is not available. This study proposes a physiological model of CO2 disposition, ventilatory regulation, and the effects of anesthetic agents on the control of breathing. The predictive performance of the model is evaluated through simulations aimed at reproducing experimental observations of drug induced hypercarbia and hypoventilation associated with intravenous administration of a fast-onset, highly potent anesthetic mu agonist (including previously unpublished experimental data determined after administration of 1 mg alfentanil bolus). The proposed model structure has substantial descriptive capability and can provide clinically relevant predictions of respiratory inhibition in the non-steady-state to enhance safety of drug delivery in the anesthetic practice.
Resumo:
INTRODUCTION: The simple bedside method for sampling undiluted distal pulmonary edema fluid through a normal suction catheter (s-Cath) has been experimentally and clinically validated. However, there are no data comparing non-bronchoscopic bronchoalveolar lavage (mini-BAL) and s-Cath for assessing lung inflammation in acute hypoxaemic respiratory failure. We designed a prospective study in two groups of patients, those with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and those with acute cardiogenic lung edema (ACLE), designed to investigate the clinical feasibility of these techniques and to evaluate inflammation in both groups using undiluted sampling obtained by s-Cath. To test the interchangeability of the two methods in the same patient for studying the inflammation response, we further compared mini-BAL and s-Cath for agreement of protein concentration and percentage of polymorphonuclear cells (PMNs). METHODS: Mini-BAL and s-Cath sampling was assessed in 30 mechanically ventilated patients, 21 with ALI/ARDS and 9 with ACLE. To analyse agreement between the two sampling techniques, we considered only simultaneously collected mini-BAL and s-Cath paired samples. The protein concentration and polymorphonuclear cell (PMN) count comparisons were performed using undiluted sampling. Bland-Altman plots were used for assessing the mean bias and the limits of agreement between the two sampling techniques; comparison between groups was performed by using the non-parametric Mann-Whitney-U test; continuous variables were compared by using the Student t-test, Wilcoxon signed rank test, analysis of variance or Student-Newman-Keuls test; and categorical variables were compared by using chi-square analysis or Fisher exact test. RESULTS: Using protein content and PMN percentage as parameters, we identified substantial variations between the two sampling techniques. When the protein concentration in the lung was high, the s-Cath was a more sensitive method; by contrast, as inflammation increased, both methods provided similar estimates of neutrophil percentages in the lung. The patients with ACLE showed an increased PMN count, suggesting that hydrostatic lung edema can be associated with a concomitant inflammatory process. CONCLUSIONS: There are significant differences between the s-Cath and mini-BAL sampling techniques, indicating that these procedures cannot be used interchangeably for studying the lung inflammatory response in patients with acute hypoxaemic lung injury.
Resumo:
The frequency of PRRSV corresponding to live vaccines and wild-type was determined in 902 pigs from North-Western Germany submitted for post-mortem examination. Overall, 18.5% of the samples were positive for the EU wild-type virus. EU genotype vaccine virus was detected in 1.3% and the NA genotype vaccine virus in 8.9% of all samples. The detection of the EU vaccine was significantly higher in pigs vaccinated with the corresponding vaccine (OR=9.4). Pigs vaccinated with NA genotype had significantly higher detection chances for the corresponding vaccine virus when compared to non-vaccinated animals (OR=3.34) animals, however, NA vaccine was also frequently detected in non-vaccinated pigs. Concluding, the dynamics of NA genotype vaccine and EU wild-type virus corresponds with studies on PRRSV spread in endemically infected herds. The potential of spontaneous spread of the NA genotype vaccine should be considered in the planning of eradication programs.
Resumo:
The purpose of this study was to examine, in the context of an economic model of health production, the relationship between inputs (health influencing activities) and fitness.^ Primary data were collected from 204 employees of a large insurance company at the time of their enrollment in an industrially-based health promotion program. The inputs of production included medical care use, exercise, smoking, drinking, eating, coronary disease history, and obesity. The variables of age, gender and education known to affect the production process were also examined. Two estimates of fitness were used; self-report and a physiologic estimate based on exercise treadmill performance. Ordinary least squares and two-stage least squares regression analyses were used to estimate the fitness production functions.^ In the production of self-reported fitness status the coefficients for the exercise, smoking, eating, and drinking production inputs, and the control variable of gender were statistically significant and possessed theoretically correct signs. In the production of physiologic fitness exercise, smoking and gender were statistically significant. Exercise and gender were theoretically consistent while smoking was not. Results are compared with previous analyses of health production. ^
Resumo:
The effects of haem limitation and iron restriction on cells of non typable Haemophilus influenzae were investigated. Haem limitation was achieved by adding concentrations of haem to growth media which resulted in substantial decreases in final cell yields. Iron restriction was achieved by substituting protoporphyrin IX (PPIX) for haem in the growth medium and adding an iron chelator to the system. The effect of these nutrient limitations on a) outer membrane composition, and b) respiratory systems of non typable H.influenzae was investigated. Several of the strains examined produced new PPIX-specific outer membrane proteins when cultured utilising PPIX as a porphyrin source. The immune response of patients with bronchiectasis to outer membrane antigens of H.influenzae cultured under iron-restricted conditions was analysed by ELISA and immunoblotting techniques. ELISA analysis revealed that individuals with severe bronchiectasis had high titres of antibodies directed against H.influenzae OMs in both serum and sputum. Immunoblotting with homologous serum showed that where PPIX-specific OMPs were produced they were antigenic and were recognised by patients' serum. This suggested that these H.influenzae OMPs may be expressed in vivo. Additionally, the development of the immune responses to non typable H.influenzae outer membrane antigens was investigated using a rat lung model. Bacteria encased in agar beads were inoculated intratracheally into rat lungs, infection was established, and the immune response monitored for 6 weeks. The animals developed antibodies to PPIX-specific OMPs during the course of infection, providing further evidence that H.influenzae express these novel OMP antigens when growing in vivo. Studies in vitro on respiratory systems of phenotypically altered H.influenzae showed that bacteria grown utilising PPIX as a porphyrin source, or under conditions of iron-restriction produced ten fold fewer cytochromes than cells grown in nutrient excess, while haem limited H.influenzae produced no detectable cytochromes. Respiration of various substrates was depressed in haem limited and in PPIX-grown cultures as compared with cells grown in nutrient excess.
Resumo:
In non-invasive ventilation, continuous monitoring of respiratory volumes is essential. Here, we present a method for the measurement of respiratory volumes by a single fiber-grating sensor of bending and provide the proof-of-principle by applying a calibration-test measurement procedure on a set of 18 healthy volunteers. Results establish a linear correlation between a change in lung volume and the corresponding change in a local thorax curvature. They also show good sensor accuracy in measurements of tidal and minute respiratory volumes for different types of breathing. The proposed technique does not rely on the air flow through an oronasal mask or the observation of chest movement by a clinician, which distinguishes it from the current clinical practice. © 2014 Optical Society of America.
Resumo:
Total deposition of petrol, diesel and environmental tobacco smoke (ETS) aerosols in the human respiratory tract for nasal breathing conditions was computed for 14 nonsmoking volunteers, considering the specific anatomical and respiratory parameters of each volunteer and the specific size distribution for each inhalation experiment. Theoretical predictions were 34.6% for petrol, 24.0% for diesel, and 18.5% for ETS particles. Compared to the experimental results, predicted deposition values were consistently smaller than the measured data (41.4% for petrol, 29.6% for diesel, and 36.2% for ETS particles). The apparent discrepancy between experimental data on total deposition and modeling results may be reconciled by considering the non-spherical shape of the test aerosols by diameter-dependent dynamic shape factors to account for differences between mobility-equivalent and volume-equivalent or thermodynamic diameters. While the application of dynamic shape factors is able to explain the observed differences for petrol and diesel particles, additional mechanisms may be required for ETS particle deposition, such as the size reduction upon inspiration by evaporation of volatile compounds and/or condensation-induced restructuring, and, possibly, electrical charge effects.