952 resultados para Non-isothermal kinetics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recycling of soft drink bottles poly(ethylene terephthalate) (PET) has been used as an additive in varnish containing alkyd resin. The PET, called to recycled PET (PET-R), was added to the varnish in increasing amounts. Samples of varnish containing PET-R (VPET-R) were used as a film onto slides and its thermal properties were evaluated using thermogravimetry (TG). Throughout the visual analysis and thermal behavior of VPET-R it is possible to identify that the maximum amount of PET-R added to the varnish without changing in the film properties was 2%.The kinetic parameters, such as activation energy (E) and the pre-exponential factor (A) were calculated by the isoconversional Flynn-Wall-Ozawa method for the samples containing 0.5 to 2.0% PET-R. A decrease in the values of E was verified for lower amounts of PET-R for the thermal decomposition reaction. A kinetic compensation effect (KCE) represented by the lnA=-13.42+0.23E equation was observed for all samples. The most suitable kinetic model to describe this decomposition process is the autocatalytic Sestak-Berggren, being the model applied to heterogeneous systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The understanding of the kinetics of devitrification of a glass is important for anticipating its stability in a particular purpose, such as fiber-drawing processes. The crystallization kinetics of (BaF2)16(ZnF2)20(SrF 2)20(NaF)2 (GaF3)5(InF3)36(GdF 3)1 glass prepared by quenching were studied by differential scanning calorimetry (DSC). Avrami's exponent (n) obtained by a non-isothermal method was 4.3 for a solid and 2.4 for a powdered sample. According to the classical interpretation of n, these magnitudes correspond to an interface-controlled crystal growth and a diffusion-controlled crystal growth, respectively. The activation energies for crystallization (E) was 62 ± 1 kJ/mol for solid glass and 245 ± 2 kJ/mol for powdered glass. These results are discussed in terms of glass particle size. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of crystallization in an indium fluoride-based glass was studied by a non-isothermal method using differential scanning calorimetry. The experiments led to an Avrami's exponent of 4.6 for solid glass and 2.2 for a powdered sample. The apparent activation energy for crystallization was found to be 130 kJ/mol for solid glass and 354 kJ/mol for the powder. These results express the profound effect of glass particle size on those kinetic parameters, as different crystallization mechanisms take place during sample heating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of paint (P), reused PET (PET-R) and paint/PET-R mixtures (PPET-R) were evaluated using DSC to verify their physical-chemical properties and thermal behavior. Films from paints and PPET-R are visually similar. It was possible to establish that the maximum amount of PET-R that can be added to paint without significantly altering its filming properties is 2%. The cure process (80-203°C) was identified through DSC curves. The kinetic parameters, activation energy (E a) and Arrhenius parameters (A) for the samples containing 0.5 to 1% of PET-R, were calculated using the Flynn-Wall-Ozawa isoconversional method. It was observed that for greater amounts of PET-R added, there is a decrease in the E a values for the cure process. A Kinetic compensation effect (KCE), represented by the equation InA=-2.70+0.31E a was observed for all the samples. The most suitable kinetic model to describe this cure process is the autocatalytic Šesták-Berggreen, model applied to heterogeneous systems. © 2007 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is divided into four chapters. They are: introduction, experimental, results and discussion about the free ligands and results and discussion about the complexes. The First Chapter, the introductory chapter, is a general introduction to the study of solid state reactions. The Second Chapter is devoted to the materials and experimental methods that have been used for carrying out tile experiments. TIle Third Chapter is concerned with the characterisations of free ligands (Picolinic acid, nicotinic acid, and isonicotinic acid) by using elemental analysis, IR spectra, X-ray diffraction, and mass spectra. Additionally, the thermal behaviour of free ligands in air has been studied by means of thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) measurements. The behaviour of thermal decomposition of the three free ligands was not identical Finally, a computer program has been used for kinetic evaluation of non-isothermal differential scanning calorimetry data according to a composite and single heating rate methods in comparison with the methods due to Ozawa and Kissinger methods. The most probable reaction mechanism for the free ligands was the Avrami-Erofeev equation (A) that described the solid-state nucleation-growth mechanism. The activation parameters of the decomposition reaction for free ligands were calculated and the results of different methods of data analysis were compared and discussed. The Fourth Chapter, the final chapter, deals with the preparation of cobalt, nickel, and copper with mono-pyridine carboxylic acids in aqueous solution. The prepared complexes have been characterised by analyses, IR spectra, X-ray diffraction, magnetic moments, and electronic spectra. The stoichiometry of these compounds was ML2x(H20), (where M = metal ion, L = organic ligand and x = water molecule). The environments of cobalt, nickel, and copper nicotinates and the environments of cobalt and nickel picolinates were octahedral, whereas the environment of copper picolinate [Cu(PA)2] was tetragonal. However, the environments of cobalt, nickel, and copper isonicotinates were polymeric octahedral structures. The morphological changes that occurred throughout the decomposition were followed by SEM observation. TG, DTG, and DSC measurements have studied the thermal behaviour of the prepared complexes in air. During the degradation processes of the hydrated complexes, the crystallisation water molecules were lost in one or two steps. This was also followed by loss of organic ligands and the metal oxides remained. Comparison between the DTG temperatures of the first and second steps of the dehydration suggested that the water of crystallisation was more strongly bonded with anion in Ni(II) complexes than in the complexes of Co(II) and Cu(II). The intermediate products of decomposition were not identified. The most probable reaction mechanism for the prepared complexes was also Avrami-Erofeev equation (A) characteristic of solid-state nucleation-growth mechanism. The tempemture dependence of conductivity using direct current was determined for cobalt, nickel, Cl.nd copper isonicotinates. An activation energy (ΔΕ), the activation energy (ΔΕ ) were calculated.The ternperature and frequency dependence of conductivity, the frequency dependence of dielectric constant, and the dielectric loss for nickel isonicotinate were determined by using altemating current. The value of s paralneter and the value of'density of state [N(Ef)] were calculated. Keyword Thermal decomposition, kinetic, electrical conduclion, pyridine rnono~ carboxylic acid, cOlnplex, transition metal compJex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluoride glasses have been extensively studied due to their high transparency in the infrared wavelength. The crystallization kinetics of these systems has been studied using DTA and DSC techniques. Most of the experimental data is frequently investigated in terms of the Johnson-Mehl-Avrami (JMA) model in order to obtain kinetic parameters.In this work, DSC technique has been used to study the crystallization of fluorozirconate glass under non-isothermal conditions. It was found that JMA model was not fit to be applied directly to these systems, therefore, the method proposed by Malek has been applied and the Sestak-Berggren (SB) model seems to be adequate to describe the crystallization process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin on the oxide form, alone or doped with others metals, has been extensively used as gas sensor, thus, this work reports on the preparation and kinetic parameters regarding the thermal decomposition of Sn(II)-ethylenediaminetetraacetate as precursor to SnO2. Thus, the acquaintance with the kinetic model regarding the thermal decomposition of the tin complex may leave the door open to foresee, whether it is possible to get thin film of SnO2 using Sn(II)-EDTA as precursor besides the influence of dopants added.The Sn(II)-EDTA soluble complex was prepared in aqueous medium by adding of tin(II) chloride acid solution to equimolar amount of ammonium salt from EDTA under N-2 atmosphere and temperature of 50degreesC arising the pH similar to 4. The compound was crystallized in ethanol at low-temperature and filtered to eliminate the chloride ions, obtaining the heptacoordinated chelate with the composition H2SnH2O(CH2N(CH2COO)(2))(2).0.5H(2)O.Results from TG, DTG and DSC curves under inert and oxidizing atmospheres indicate the presence of water coordinated to the metal and that the ethylenediamine fraction is thermally more stable than carboxylate groups. The final residue from thermal decomposition was the SnO2 characterized by X-ray as a tetragonal rutile phase.Applying the isoconversional Wall-Flynn-Ozawa method on the DSC curves, average activation energy: E-a = 183.7 +/- 12.7 and 218.9 +/- 2.1 kJ mol(-1), and pre-exponential factor: log A = 18.85 +/- 0.27 and 19.10 +/- 0.27 min(-1), at 95% confidence level, could be obtained, regarding the loss of coordinated water and thermal decomposition of the carboxylate groups, respectively. The E-a and logA also could be obtained applying isoconventional Wall-Flynn method on the TG curves.From E-a and log A values, Dollimore and Malek procedures could be applied suggesting R3 (contracting volume) and SB (two-parameter model) as the kinetic model to the loss of coordinated water (177-244degreesC) and thermal decomposition of the carboxylate groups (283-315degreesC), respectively. Simulated and experimental normalized DTG and DSC curves besides analysis of residuals check these kinetic models. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Algae are a new potential biomass for energy production but there is limited information on their pyrolysis and kinetics. The main aim of this thesis is to investigate the pyrolytic behaviour and kinetics of Chlorella vulgaris, a green microalga. Under pyrolysis conditions, these microalgae show their comparable capabilities to terrestrial biomass for energy and chemicals production. Also, the evidence from a preliminary pyrolysis by the intermediate pilot-scale reactor supports the applicability of these microalgae in the existing pyrolysis reactor. Thermal decomposition of Chlorella vulgaris occurs in a wide range of temperature (200-550°C) with multi-step reactions. To evaluate the kinetic parameters of their pyrolysis process, two approaches which are isothermal and non-isothermal experiments are applied in this work. New developed Pyrolysis-Mass Spectrometry (Py-MS) technique has the potential for isothermal measurements with a short run time and small sample size requirement. The equipment and procedure are assessed by the kinetic evaluation of thermal decomposition of polyethylene and lignocellulosic derived materials (cellulose, hemicellulose, and lignin). In the case of non-isothermal experiment, Thermogravimetry- Mass Spectrometry (TG-MS) technique is used in this work. Evolved gas analysis provides the information on the evolution of volatiles and these data lead to a multi-component model. Triplet kinetic values (apparent activation energy, pre-exponential factor, and apparent reaction order) from isothermal experiment are 57 (kJ/mol), 5.32 (logA, min-1), 1.21-1.45; 9 (kJ/mol), 1.75 (logA, min-1), 1.45 and 40 (kJ/mol), 3.88 (logA, min-1), 1.45- 1.15 for low, middle and high temperature region, respectively. The kinetic parameters from non-isothermal experiment are varied depending on the different fractions in algal biomass when the range of apparent activation energies are 73-207 (kJ/mol); pre-exponential factor are 5-16 (logA, min-1); and apparent reaction orders are 1.32–2.00. The kinetic procedures reported in this thesis are able to be applied to other kinds of biomass and algae for future works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, laminar natural convection flow from a permeable and isothermal vertical surface placed in non-isothermal surroundings is considered. Introducing appropriate transformations into the boundary layer equations governing the flow derives non-similar boundary layer equations. Results of both the analytical and numerical solutions are then presented in the form of skin-friction and Nusselt number. Numerical solutions of the transformed non-similar boundary layer equations are obtained by three distinct solution methods, (i) the perturbation solutions for small � (ii) the asymptotic solution for large � (iii) the implicit finite difference method for all � where � is the transpiration parameter. Perturbation solutions for small and large values of � are compared with the finite difference solutions for different values of pertinent parameters, namely, the Prandtl number Pr, and the ambient temperature gradient n.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of conduction-convection-radiation on natural convection flow of Newtonian optically thick gray fluid, confined in a non-Darcian porous media square cavity is numerically studied. For the gray fluid consideration is given to Rosseland diffusion approximation. Further assuming that (i) the temperature of the left vertical wall is varying linearly with height, (ii) cooled right vertical and top walls and (iii) the bottom wall is uniformly-heated. The governing equations are solved using the Alternate Direct Implicit method together with the Successive Over Relaxation technique. The investigation of the effect of governing parameters namely the Forschheimer resistance (Γ), the Planck constant (Rd), and the temperature difference (Δ), on flow pattern and heat transfer characteristics has been carried out. It was seen that the reduction of flow and heat transfer occurs as the Forschheimer resistance is increased. On the other hand both the strength of flow and heat transfer increases as the temperature ratio, Δ, is increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC) has been used to obtain kinetic and nucleation parameters for polymer crystallization under a non-isothermal mode of operation. The available isothermal nucleation growth-rate equation has been modified for non-isothermal kinetic analysis. The values of the nucleation constant (K g ) and surface free energies (sgr, sgr e ) have been obtained for i-polybutene-1, i-polypropylene, poly(L-lactic acid), and polyoxymethylene and are compared with those obtained from isothermal kinetic analysis; a good agreement in both is seen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of some experimental parameters, namely sample weight, particle size and its distribution, heating rate and flow rate of inert gas, on the fractional decomposition of calcium carbonate samples have been studied both experimentally and theoretical. The general conclusions obtained from theoretical analysis are corroborated qualitatively by the experimental data. The analysis indicates that the kinetic compensating effect may be partly due to the variations in experimental parameters for different experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a perturbation technique, we derive Modified Korteweg—de Vries (MKdV) equations for a mixture of warm-ion fluid (γ i = 3) and hot and non-isothermal electrons (γ e> 1), (i) when deviations from isothermality are finite, and (ii) when deviations from isothermality are small. We obtain stationary solutions for these equations, and compare them with the corresponding solutions for a mixture of warm-ion fluid (γ i = 3) and hot, isothermal electrons (γ i = 1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The criterion for the design of a temperature-compensated reference electrode for non-isothermal galvanic sensors is deduced from the basic flux equations of irreversible thermodynamics. It is shown that when the Seebeck coefficient of the non-isothermal cell using a solid oxygen ion-conducting electrolyte under pure oxygen is equal to the relative partial molar entropy of oxygen in the reference electrode divided by 4F, then the EMF of the non-isothermal cell is the same as that of an isothermal cell with the same electrodes operating at the higher temperature. By measuring the temperature of the melt alone and the EMF of the non-isothermal galvanic sensor, one can derive the chemical potential or the concentration of oxygen in a corrosive medium. The theory is experimentally checked using sensors for oxygen in liquid copper constructed with various metal+oxide electrodes and fully stabilised (CaO)ZrO2 as the electrolyte. To satisfy the exact condition for temperature compensation it is often necessary to have the metal or oxide as a solid solution in the reference electrode.