816 resultados para Non-alcoholic fatty liver disease (NAFLD)
Resumo:
Background: Non-alcoholic fatty liver disease, the leading cause of chronic liver disease in children, is defined by hepatic fat infiltration >5% of hepatocytes, in the absence of excessive alcohol intake, evidence of viral, autoimmune or drug-induced liver disease. Conditions like rare genetic disorders must be considered in the differential diagnosis. Case Report: Two male brothers, and a non-related girl, all overweight, had liver steatosis. One of the brothers and the girl had elevated transaminases; all three presented with low total cholesterol, low density lipoproteins and very low density lipoproteins cholesterol levels, hypotriglyceridemia and low apolipoprotein B. A liver biopsy performed in the brother with citolysis confirmed steatohepatitis and the molecular study of apolipoprotein B gene showed a novel homozygous mutation (c.9353dup p.Asn3118Lysfs17). Patients with cytolysis lost weight, however liver steatosis persists. Conclusion: Fatty liver disease might be a consequence of hypobetalipoproteinemia. Evidence is scarce due to low number of reported cases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
With no approved pharmacological treatment, non-alcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here we show that a high-fat high-sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic NAD(+) levels driving reductions in hepatic mitochondrial content, function and ATP levels, in conjunction with robust increases in hepatic weight, lipid content and peroxidation in C57BL/6J mice. In an effort to assess the effect of NAD(+) repletion on the development of steatosis in mice, nicotinamide riboside (NR), a precursor for NAD(+) biosynthesis, was given to mice concomitant, as preventive strategy (NR-Prev), and as a therapeutic intervention (NR-Ther), to a HFHS diet. We demonstrate that NR prevents and reverts NAFLD by inducing a SIRT1- and SIRT3-dependent mitochondrial unfolded protein response (UPR(mt) ), triggering an adaptive mitohormetic pathway to increase hepatic β-oxidation and mitochondrial complex content and activity. The cell-autonomous beneficial component of NR treatment was revealed in liver-specific Sirt1 KO mice (Sirt1(hep-/-) ), while Apolipoprotein E-deficient (Apoe(-/-) ) mice challenged with a high-fat high-cholesterol diet (HFC), affirmed the use of NR in other independent models of NAFLD. CONCLUSION Our data warrant the future evaluation of NAD(+) boosting strategies to manage the development or progression of NAFLD. This article is protected by copyright. All rights reserved.
Resumo:
Background: This study was performed to understand the possible therapeutic activity of Terminalia paniculata ethanolic extract (TPEE) on non alcoholic fatty liver in rats fed with high fat diet. Methods: Thirty six SD rats were divided into 6 groups (n = 6): Normal control (NC), high fat diet (HFD), remaining four groups were fed on HFD along with different doses of TPEE (100,150 and 200 mg/kg b.wt) or orlistat, for ten weeks. Liver tissue was homogenized and analyzed for lipid profiles, activities of superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) content. Further, the expression levels of FAS and AMPK-1 alpha were also studied in addition to histopathology examination of liver tissue in all the groups. Results: HFD significantly increased hepatic liver total cholesterol (TC), triglycerides (TG), free fatty acids (FFA) and MDA but decreased the activities of SOD and CAT which were subsequently reversed by supplementation with TPEE in a dose-dependent manner. In addition, TPEE administration significantly down regulated hepatic mRNA expression of FAS but up regulated AMPK-1 alpha compared to HFD alone fed group. Furthermore, western blot analysis of FAS has clearly demonstrated decreased expression of FAS in HFD + TPEE (200 mg/kg b. wt) treated group when compared to HFD group at protein level. Conclusions: Our biochemical studies on hepatic lipid profiles and antioxidant enzyme activities supported by histological and expression studies suggest a potential therapeutic role for TPEE in regulating obesity through FAS.
Resumo:
Non-alcoholic steatohepatitis (NASH) as one entity of non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and accompanies the rise in the prevalence of obesity, diabetes mellitus, hypertension and hyperlipidemia in the western world. It is not known why some patients progress in the disease and develop inflammation in the liver, whereas others remain in the stage of simple steatosis, which generally has a benign course. However, NASH can progress to fibrosis and cirrhosis as well as hepatocellular carcinoma. Therefore, it is important to determine the stage of the disease in patients presenting with the metabolic syndrome and abnormal liver function tests, suggesting NAFLD. Liver biopsy is the only tool that allows for reliable detection, grading and staging of liver disease. The main strategies in the treatment of NASH are correction of risk factors (lifestyle modifications, insuline sensitizer) and anti-oxidants (ursodeoxycholic acid, vitamin E) which both have been shown to improve liver histology as well as liver enzymes. Patients wih alcoholic fatty liver disease (AFLD) present the same liver histology and often also metabolic alterations similar to metabolic syndrome. Therefore, MAFLD (metabolic syndrome-associated fatty liver disease) might describe both patient populations more accurately and also describes the pathophysiological characteristics.
Resumo:
Alcoholic liver disease (ALD) accounts for the majority of chronic liver disease in Western countries. The spectrum of ALD includes steatosis with or without fibrosis in virtually all individuals with an alcohol consumption of >80 g/day, alcoholic steatohepatitis of variable severity in 10-35% and liver cirrhosis in approximately 15% of patients. Once cirrhosis is established, there is an annual risk for hepatocellular carcinoma of 1-2%. Environmental factors such as drinking patterns, coexisting liver disease, obesity, diet composition and comedication may modify the natural course of ALD. Twin studies have revealed a substantial contribution of genetic factors to the evolution of ALD, as demonstrated by a threefold higher disease concordance between monozygotic twins and dizygotic twins. With genotyping becoming widely available, a large number of genetic case-control studies evaluating candidate gene variants coding for proteins involved in the degradation of alcohol, mediating antioxidant defence, the evolution and counteraction of necroinflammation and formation and degradation of extracellular matrix have been published with largely unconfirmed, impeached or even disproved associations. Recently, whole genome analyses of large numbers of genetic variants in several chronic liver diseases including gallstone disease, primary sclerosing cholangitis and non-alcoholic fatty liver disease (NAFLD) have identified novel yet unconsidered candidate genes. Regarding the latter, a sequence variation within the gene coding for patatin-like phospholipase encoding 3 (PNPLA3, rs738409) was found to modulate steatosis, necroinflammation and fibrosis in NAFLD. Subsequently, the same variant was repeatedly confirmed as the first robust genetic risk factor for progressive ALD.
Resumo:
BACKGROUND & AIMS: The genetic background of alcoholic liver diseases and their complications are increasingly recognized. A common polymorphism in the neurocan (NCAN) gene, which is known to be expressed in neuronal tissue, has been identified as a risk factor for non-alcoholic fatty liver disease (NAFLD). We investigated if this polymorphism may also be related to alcoholic liver disease (ALD) and hepatocellular carcinoma (HCC). METHODS: We analysed the distribution of the NCAN rs2228603 genotypes in 356 patients with alcoholic liver cirrhosis, 126 patients with alcoholic HCC, 382 persons with alcohol abuse without liver damage, 362 healthy controls and in 171 patients with hepatitis C virus (HCV) associated HCC. Furthermore, a validation cohort of 229 patients with alcoholic cirrhosis (83 with HCC) was analysed. The genotypes were determined by LightSNiP assays. The expression of NCAN was studied by RT-PCR and immunofluorescence microscopy. RESULTS: The frequency of the NCAN rs2228603 T allele was significantly increased in patients with HCC due to ALD (15.1%) compared to alcoholic cirrhosis without HCC (9.3%), alcoholic controls (7.2%), healthy controls (7.9%), and HCV associated HCC (9.1%). This finding was confirmed in the validation cohort (15.7% vs. 6.8%, OR=2.53; 95%CI: 1.36-4.68; p=0.0025) and by multivariate analysis (OR=1.840; 95%CI: 1.22-2.78; p=0.004 for carriage of the rs2228603 T allele). In addition, we identified and localised NCAN expression in human liver. CONCLUSIONS: NCAN is not only expressed in neuronal tissue, but also in the liver. Its rs2228603 polymorphism is a risk factor for HCC in ALD, but not in HCV infection.
Resumo:
Accepted Article Abstract Background: Liver diseases in Australia are estimated to affect 6 million people with a societal cost of $51 billion annually. Information about utilization of specialist hepatology care is critical in informing policy makers about the requirements for delivery of hepatology-related health care. Aims: This study examined etiology and severity of liver disease seen in a tertiary hospital hepatology clinic, as well as resource utilisation patterns. Methods: A longitudinal cohort study included consecutive patients booked in hepatology outpatient clinics during a 3 month period. Subsequent outpatient appointments for these patients over the following 12 months were then recorded. Results: During the initial 3 month period 1471 appointments were scheduled with a hepatologist, 1136 of which were attended. 21% of patients were “new cases”. Hepatitis B (HBV) was the most common disease etiology for new cases (37%). Advanced disease at presentation varied between etiology, with HBV (5%), Hepatitis C (HCV) (31%), non-alcoholic fatty liver disease (NAFLD) (46%) and alcoholic liver disease (ALD) (72%). Most patients (83%) attended multiple hepatology appointments, and a range of referrals patterns for procedures, investigations and other specialty assessments were observed. Conclusions: There is a high prevalence of HBV in new case referrals. Patients with HCV, NAFLD and ALD have a high prevalence of advanced liver disease at referral, requiring ongoing surveillance for development of decompensated liver disease and liver cancer. These findings that describe patterns of health service utilisation among patients with liver disease provide useful information for planning sustainable health service provision for this clinical population
Resumo:
Alcohol-induced liver injury is the most common liver disease in which fatty acid metabolism is altered. It is thought that altered NAD+/NADH redox potential by alcohol in the liver causes fatty liver by inhibiting fatty acid oxidation and the activity of tricarboxylic acid cycle reactions. β-Lapachone (βL), a naturally occurring quinone, has been shown to stimulate fatty acid oxidation in an obese mouse model by activating adenosine monophosphate-activated protein kinase (AMPK). In this report, we clearly show that βL reduced alcohol-induced hepatic steatosis and induced fatty acid oxidizing capacity in ethanol-fed rats. βL treatment markedly decreased hepatic lipids while serum levels of lipids and lipoproteins were increased in rats fed ethanol-containing liquid diets with βL administration. Furthermore, inhibition of lipolysis, enhancement of lipid mobilization to mitochondria and upregulation of mitochondrial β-oxidation activity in the soleus muscle were observed in ethanol/βL-treated animals compared to the ethanol-fed rats. In addition, the activity of alcohol dehydrogenase, but not aldehyde dehydrogenase, was significantly increased in rats fed βL diets. βL-mediated modulation of NAD+/NADH ratio led to the activation of AMPK signaling in these animals. Conclusion: Our results suggest that improvement of fatty liver by βL administration is mediated by the upregulation of apoB100 synthesis and lipid mobilization from the liver as well as the direct involvement of βL on NAD+/NADH ratio changes, resulting in the activation of AMPK signaling and PPARα-mediated β-oxidation. Therefore, βL-mediated alteration of NAD+/NADH redox potential may be of potential therapeutic benefit in the clinical setting.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Abstract Aim Oxidative stress has been implicated in the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD). Vitamin C and vitamin E are known to react with reactive oxygen species (ROS) blocking the propagation of radical reactions in a wide range of oxidative stress situations. The potential therapeutic efficacy of antioxidants in NAFLD is unknown. The aim of this study was to evaluate the role of antioxidant drugs (vitamin C or vitamin E) in its prevention. Methods Fatty liver disease was induced in Wistar rats by choline-deficient diet for four weeks. The rats were randomly assigned to receive vitamin E (n = 6) – (200 mg/day), vitamin C (n = 6) (30 mg/Kg/day) or vehicle orally. Results In the vehicle and vitamin E-treated rats, there were moderate macro and microvesicular fatty changes in periportal area without inflammatory infiltrate or fibrosis. Scharlach stain that used for a more precise identification of fatty change was strong positive. With vitamin C, there was marked decrease in histological alterations. Essentially, there was no liver steatosis, only hepatocellular ballooning. Scharlach stain was negative. The lucigenin-enhanced luminescence was reduced with vitamin C (1080 ± 330 cpm/mg/minx103) as compared to those Vitamin E and control (2247 ± 790; 2020 ± 407 cpm/mg/minx103, respectively) (p < 0.05). Serum levels of aminotransferases were unaltered by vitamin C or vitamin E. Conclusions 1) Vitamin C reduced oxidative stress and markedly inhibited the development of experimental liver steatosis induced by choline-deficient diet ; 2)Vitamin E neither prevented the development of fatty liver nor reduced the oxidative stress in this model.