983 resultados para Non informative priors
Resumo:
Defining the pharmacokinetics of drugs in overdose is complicated. Deliberate self-poisoning is generally impulsive and associated with poor accuracy in dose history. In addition, early blood samples are rarely collected to characterize the whole plasma-concentration time profile and the effect of decontamination on the pharmacokinetics is uncertain. The aim of this study was to explore a fully Bayesian methodology for population pharmacokinetic analysis of data that arose from deliberate self-poisoning with citalopram. Prior information on the pharmacokinetic parameters was elicited from 14 published studies on citalopram when taken in therapeutic doses. The data set included concentration-time data from 53 patients studied after 63 citalopram overdose events (dose range: 20-1700 mg). Activated charcoal was administered between 0.5 and 4 h after 17 overdose events. The clinical investigator graded the veracity of the patients' dosing history on a 5-point ordinal scale. Inclusion of informative priors stabilised the pharmacokinetic model and the population mean values could be estimated well. There were no indications of non-linear clearance after excessive doses. The final model included an estimated uncertainty of the dose amount which in a simulation study was shown to not affect the model's ability to characterise the effects of activated charcoal. The effect of activated charcoal on clearance and bioavailability was pronounced and resulted in a 72% increase and 22% decrease, respectively. These findings suggest charcoal administration is potentially beneficial after citalopram overdose. The methodology explored seems promising for exploring the dose-exposure relationship in the toxicological settings.
Resumo:
Les modèles incrémentaux sont des modèles statistiques qui ont été développés initialement dans le domaine du marketing. Ils sont composés de deux groupes, un groupe contrôle et un groupe traitement, tous deux comparés par rapport à une variable réponse binaire (le choix de réponses est « oui » ou « non »). Ces modèles ont pour but de détecter l’effet du traitement sur les individus à l’étude. Ces individus n’étant pas tous des clients, nous les appellerons : « prospects ». Cet effet peut être négatif, nul ou positif selon les caractéristiques des individus composants les différents groupes. Ce mémoire a pour objectif de comparer des modèles incrémentaux d’un point de vue bayésien et d’un point de vue fréquentiste. Les modèles incrémentaux utilisés en pratique sont ceux de Lo (2002) et de Lai (2004). Ils sont initialement réalisés d’un point de vue fréquentiste. Ainsi, dans ce mémoire, l’approche bayésienne est utilisée et comparée à l’approche fréquentiste. Les simulations sont e ectuées sur des données générées avec des régressions logistiques. Puis, les paramètres de ces régressions sont estimés avec des simulations Monte-Carlo dans l’approche bayésienne et comparés à ceux obtenus dans l’approche fréquentiste. L’estimation des paramètres a une influence directe sur la capacité du modèle à bien prédire l’effet du traitement sur les individus. Nous considérons l’utilisation de trois lois a priori pour l’estimation des paramètres de façon bayésienne. Elles sont choisies de manière à ce que les lois a priori soient non informatives. Les trois lois utilisées sont les suivantes : la loi bêta transformée, la loi Cauchy et la loi normale. Au cours de l’étude, nous remarquerons que les méthodes bayésiennes ont un réel impact positif sur le ciblage des individus composant les échantillons de petite taille.
Resumo:
Les modèles incrémentaux sont des modèles statistiques qui ont été développés initialement dans le domaine du marketing. Ils sont composés de deux groupes, un groupe contrôle et un groupe traitement, tous deux comparés par rapport à une variable réponse binaire (le choix de réponses est « oui » ou « non »). Ces modèles ont pour but de détecter l’effet du traitement sur les individus à l’étude. Ces individus n’étant pas tous des clients, nous les appellerons : « prospects ». Cet effet peut être négatif, nul ou positif selon les caractéristiques des individus composants les différents groupes. Ce mémoire a pour objectif de comparer des modèles incrémentaux d’un point de vue bayésien et d’un point de vue fréquentiste. Les modèles incrémentaux utilisés en pratique sont ceux de Lo (2002) et de Lai (2004). Ils sont initialement réalisés d’un point de vue fréquentiste. Ainsi, dans ce mémoire, l’approche bayésienne est utilisée et comparée à l’approche fréquentiste. Les simulations sont e ectuées sur des données générées avec des régressions logistiques. Puis, les paramètres de ces régressions sont estimés avec des simulations Monte-Carlo dans l’approche bayésienne et comparés à ceux obtenus dans l’approche fréquentiste. L’estimation des paramètres a une influence directe sur la capacité du modèle à bien prédire l’effet du traitement sur les individus. Nous considérons l’utilisation de trois lois a priori pour l’estimation des paramètres de façon bayésienne. Elles sont choisies de manière à ce que les lois a priori soient non informatives. Les trois lois utilisées sont les suivantes : la loi bêta transformée, la loi Cauchy et la loi normale. Au cours de l’étude, nous remarquerons que les méthodes bayésiennes ont un réel impact positif sur le ciblage des individus composant les échantillons de petite taille.
Resumo:
Expert knowledge is valuable in many modelling endeavours, particularly where data is not extensive or sufficiently robust. In Bayesian statistics, expert opinion may be formulated as informative priors, to provide an honest reflection of the current state of knowledge, before updating this with new information. Technology is increasingly being exploited to help support the process of eliciting such information. This paper reviews the benefits that have been gained from utilizing technology in this way. These benefits can be structured within a six-step elicitation design framework proposed recently (Low Choy et al., 2009). We assume that the purpose of elicitation is to formulate a Bayesian statistical prior, either to provide a standalone expert-defined model, or for updating new data within a Bayesian analysis. We also assume that the model has been pre-specified before selecting the software. In this case, technology has the most to offer to: targeting what experts know (E2), eliciting and encoding expert opinions (E4), whilst enhancing accuracy (E5), and providing an effective and efficient protocol (E6). Benefits include: -providing an environment with familiar nuances (to make the expert comfortable) where experts can explore their knowledge from various perspectives (E2); -automating tedious or repetitive tasks, thereby minimizing calculation errors, as well as encouraging interaction between elicitors and experts (E5); -cognitive gains by educating users, enabling instant feedback (E2, E4-E5), and providing alternative methods of communicating assessments and feedback information, since experts think and learn differently; and -ensuring a repeatable and transparent protocol is used (E6).
Resumo:
Four morphologically cryptic species of the Bactrocera dorsalis fruit fly complex (B. dorsalis s.s., B. papayae, B. carambolae and B. philippinensis) are serious agricultural pests. As they are difficult to diagnose using traditional taxonomic techniques, we examined the potential for geometric morphometric analysis of wing size and shape to discriminate between them. Fifteen wing landmarks generated size and shape data for 245 specimens for subsequent comparisons among three geographically distinct samples of each species. Intraspecific wing size was significantly different within samples of B. carambolae and B. dorsalis s.s. but not within samples of B. papayae or B. philippinensis. Although B. papayae had the smallest wings (average centroid size=6.002 mm±0.061 SE) and B. dorsalis s.s. the largest (6.349 mm±0.066 SE), interspecific wing size comparisons were generally non-informative and incapable of discriminating species. Contrary to the wing size data, canonical variate analysis based on wing shape data discriminated all species with a relatively high degree of accuracy; individuals were correctly reassigned to their respective species on average 93.27% of the time. A single sample group of B. carambolae from locality 'TN Malaysia' was the only sample to be considerably different from its conspecific groups with regards to both wing size and wing shape. This sample was subsequently deemed to have been originally misidentified and likely represents an undescribed species. We demonstrate that geometric morphometric techniques analysing wing shape represent a promising approach for discriminating between morphologically cryptic taxa of the B. dorsalis species complex.
Resumo:
In the Bayesian framework a standard approach to model criticism is to compare some function of the observed data to a reference predictive distribution. The result of the comparison can be summarized in the form of a p-value, and it's well known that computation of some kinds of Bayesian predictive p-values can be challenging. The use of regression adjustment approximate Bayesian computation (ABC) methods is explored for this task. Two problems are considered. The first is the calibration of posterior predictive p-values so that they are uniformly distributed under some reference distribution for the data. Computation is difficult because the calibration process requires repeated approximation of the posterior for different data sets under the reference distribution. The second problem considered is approximation of distributions of prior predictive p-values for the purpose of choosing weakly informative priors in the case where the model checking statistic is expensive to compute. Here the computation is difficult because of the need to repeatedly sample from a prior predictive distribution for different values of a prior hyperparameter. In both these problems we argue that high accuracy in the computations is not required, which makes fast approximations such as regression adjustment ABC very useful. We illustrate our methods with several samples.
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.
Resumo:
We extend Aumann's [3] theorem deriving correlated equilibria as a consequence of common priors and common knowledge of rationality by explicitly allowing for non-rational behavior. We replace the assumption of common knowledge of rationality with a substantially weaker notion, joint p-belief of rationality, where agents believe the other agents are rational with probabilities p = (pi)i2I or more. We show that behavior in this case constitutes a constrained correlated equilibrium of a doubled game satisfying certain p-belief constraints and characterize the topological structure of the resulting set of p-rational outcomes. We establish continuity in the parameters p and show that, for p su ciently close to one, the p-rational outcomes are close to the correlated equilibria and, with high probability, supported on strategies that survive the iterated elimination of strictly dominated strategies. Finally, we extend Aumann and Dreze's [4] theorem on rational expectations of interim types to the broader p-rational belief systems, and also discuss the case of non-common priors.
Resumo:
Priors are existing information or beliefs that are needed in Bayesian analysis. Informative priors are important in obtaining the Bayesian posterior distributions for estimated parameters in stock assessment. In the case of the steepness parameter (h), the need for an informative prior is particularly important because it determines the stock-recruitment relationships in the model. However, specifications of the priors for the h parameter are often subjective. We used a simple population model to derive h priors based on life history considerations. The model was based on the evolutionary principle that persistence of any species, given its life history (i.e., natural mortality rate) and its exposure to recruitment variability, requires a minimum recruitment compensation that enables the species to rebound consistently from low critical abundances (Nc). Using the model, we derived the prior probability distributions of the h parameter for fish species that have a range of natural mortality, recruitment variabilities, and Nt values.
Resumo:
We extend previous work on fully unsupervised part-of-speech tagging. Using a non-parametric version of the HMM, called the infinite HMM (iHMM), we address the problem of choosing the number of hidden states in unsupervised Markov models for PoS tagging. We experiment with two non-parametric priors, the Dirichlet and Pitman-Yor processes, on the Wall Street Journal dataset using a parallelized implementation of an iHMM inference algorithm. We evaluate the results with a variety of clustering evaluation metrics and achieve equivalent or better performances than previously reported. Building on this promising result we evaluate the output of the unsupervised PoS tagger as a direct replacement for the output of a fully supervised PoS tagger for the task of shallow parsing and compare the two evaluations. © 2009 ACL and AFNLP.
Resumo:
BACKGROUND: Genetic association studies are conducted to discover genetic loci that contribute to an inherited trait, identify the variants behind these associations and ascertain their functional role in determining the phenotype. To date, functional annotations of the genetic variants have rarely played more than an indirect role in assessing evidence for association. Here, we demonstrate how these data can be systematically integrated into an association study's analysis plan. RESULTS: We developed a Bayesian statistical model for the prior probability of phenotype-genotype association that incorporates data from past association studies and publicly available functional annotation data regarding the susceptibility variants under study. The model takes the form of a binary regression of association status on a set of annotation variables whose coefficients were estimated through an analysis of associated SNPs in the GWAS Catalog (GC). The functional predictors examined included measures that have been demonstrated to correlate with the association status of SNPs in the GC and some whose utility in this regard is speculative: summaries of the UCSC Human Genome Browser ENCODE super-track data, dbSNP function class, sequence conservation summaries, proximity to genomic variants in the Database of Genomic Variants and known regulatory elements in the Open Regulatory Annotation database, PolyPhen-2 probabilities and RegulomeDB categories. Because we expected that only a fraction of the annotations would contribute to predicting association, we employed a penalized likelihood method to reduce the impact of non-informative predictors and evaluated the model's ability to predict GC SNPs not used to construct the model. We show that the functional data alone are predictive of a SNP's presence in the GC. Further, using data from a genome-wide study of ovarian cancer, we demonstrate that their use as prior data when testing for association is practical at the genome-wide scale and improves power to detect associations. CONCLUSIONS: We show how diverse functional annotations can be efficiently combined to create 'functional signatures' that predict the a priori odds of a variant's association to a trait and how these signatures can be integrated into a standard genome-wide-scale association analysis, resulting in improved power to detect truly associated variants.
Resumo:
Radiocarbon dating is routinely used in paleoecology to build chronolo- gies of lake and peat sediments, aiming at inferring a model that would relate the sediment depth with its age. We present a new approach for chronology building (called “Bacon”) that has received enthusiastic attention by paleoecologists. Our methodology is based on controlling core accumulation rates using a gamma autoregressive semiparametric model with an arbitrary number of subdivisions along the sediment. Using prior knowledge about accumulation rates is crucial and informative priors are routinely used. Since many sediment cores are currently analyzed, using different data sets and prior distributions, a robust (adaptive) MCMC is very useful. We use the t-walk (Christen and Fox, 2010), a self adjusting, robust MCMC sampling algorithm, that works acceptably well in many situations. Outliers are also addressed using a recent approach that considers a Student-t model for radiocarbon data. Two examples are presented here, that of a peat core and a core from a lake, and our results are compared with other approaches.
Resumo:
This paper considers inference from multinomial data and addresses the problem of choosing the strength of the Dirichlet prior under a mean-squared error criterion. We compare the Maxi-mum Likelihood Estimator (MLE) and the most commonly used Bayesian estimators obtained by assuming a prior Dirichlet distribution with non-informative prior parameters, that is, the parameters of the Dirichlet are equal and altogether sum up to the so called strength of the prior. Under this criterion, MLE becomes more preferable than the Bayesian estimators at the increase of the number of categories k of the multinomial, because non-informative Bayesian estimators induce a region where they are dominant that quickly shrinks with the increase of k. This can be avoided if the strength of the prior is not kept constant but decreased with the number of categories. We argue that the strength should decrease at least k times faster than usual estimators do.
Resumo:
Thesis (Master's)--University of Washington, 2013