951 resultados para Nitrous oxide, Dinitrogen monoxide, Anaesthesiologie


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted recently as an effective method to reduce nitrous oxide (N2O) emissions from fertilised agricultural fields, whilst increasing yield and nitrogen use efficiency. Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser and consequently elevated emissions of nitrous oxide (N2O) can be expected. However, to date only limited data is available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment investigated the effect of the nitrification inhibitors (DMPP & 3MP+TZ) on N2O emissions and yield from a typical vegetable production system in sub-tropical Australia. Soil N2O fluxes were monitored continuously over an entire year with a fully automated system. Measurements were taken from three subplots for each treatment within a randomized complete blocks design. There was a significant inhibition effect of DMPP and 3MP+TZ on N2O emissions and soil mineral N content directly following the application of the fertiliser over the vegetable cropping phase. However this mitigation was offset by elevated N2O emissions from the inhibitor treatments over the post-harvest fallow period. Cumulative annual N2O emissions amounted to 1.22 kg-N/ha, 1.16 kg-N/ha, 1.50 kg-N/ha and 0.86 kg-N/ha in the conventional fertiliser (CONV), the DMPP treatment, the 3MP+TZ treatment and the zero fertiliser (0N) respectively. Corresponding fertiliser induced emission factors (EFs) were low with only 0.09 - 0.20% of the total applied fertiliser lost as N2O. There was no significant effect of the nitrification inhibitors on yield compared to the CONV treatment for the three vegetable crops (green beans, broccoli, lettuce) grown over the experimental period. This study highlights that N2O emissions from such vegetable cropping system are primarily controlled by post-harvest emissions following the incorporation of vegetable crop residues into the soil. It also shows that the use of nitrification inhibitors can lead to elevated N2O emissions by storing N in the soil profile that is available to soil microbes during the decomposition of the vegetable residues over the post-harvest phase. Hence the use of nitrification inhibitors in vegetable systems has to be treated carefully and fertiliser rates need to be adjusted to avoid excess soil nitrogen during the postharvest phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser. Elevated emissions of nitrous oxide (N2O) can be expected as a consequence. In order to mitigate N2O emissions from fertilised agricultural fields, the use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted. However, no data is currently available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment was conducted to investigate the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N2O emissions and yield from broccoli production in sub-tropical Australia. Soil N2O fluxes were monitored continuously (3 h sampling frequency) with fully automated, pneumatically operated measuring chambers linked to a sampling control system and a gas chromatograph. Cumulative N2O emissions over the 5 month observation period amounted to 298 g-N/ha, 324 g-N/ha, 411 g-N/ha and 463 g-N/ha in the conventional fertiliser (CONV), the DMPP treatment (DMPP), the DMMP treatment with a 10% reduced fertiliser rate (DMPP-red) and the zero fertiliser (0N), respectively. The temporal variation of N2O fluxes showed only low emissions over the broccoli cropping phase, but significantly elevated emissions were observed in all treatments following broccoli residues being incorporated into the soil. Overall 70–90% of the total emissions occurred in this 5 weeks fallow phase. There was a significant inhibition effect of DMPP on N2O emissions and soil mineral N content over the broccoli cropping phase where the application of DMPP reduced N2O emissions by 75% compared to the standard practice. However, there was no statistical difference between the treatments during the fallow phase or when the whole season was considered. This study shows that DMPP has the potential to reduce N2O emissions from intensive vegetable systems, but also highlights the importance of post-harvest emissions from incorporated vegetable residues. N2O mitigation strategies in vegetable systems need to target these post-harvest emissions and a better evaluation of the effect of nitrification inhibitors over the fallow phase is needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NITROUS OXIDE (N2O) IS a potent greenhouse gas and the predominant ozone-depleting substance in the atmosphere. Agricultural nitrogenous fertiliser use is the major source of human-induced N2O emissions. A field experiment was conducted at Bundaberg from October 2012 to September 2014 to examine the impacts of legume crop (soybean) rotation as an alternative nitrogen (N) source on N2O emissions during the fallow period and to investigate low-emission soybean residue management practices. An automatic monitoring system and manual gas sampling chambers were used to measure greenhouse gas emissions from soil. Soybean cropping during the fallow period reduced N2O emissions compared to the bare fallow. Based on the N content in the soybean crop residues, the fertiliser N application rate was reduced by about 120 kg N/ha for the subsequent sugarcane crop. Consequently, emissions of N2O during the sugarcane cropping season were significantly lower from the soybean cropped soil than those from the conventionally fertilised (145 kg N/ha) soil following bare fallow. However, tillage that incorporated the soybean crop residues into soil promoted N2O emissions in the first two months. Spraying a nitrification inhibitor (DMPP) onto the soybean crop residues before tillage effectively prevented the N2O emission spikes. Compared to conventional tillage, practising no-till with or without growing a nitrogen catch crop during the time after soybean harvest and before cane planting also reduced N2O emissions substantially. These results demonstrated that soybean rotation during the fallow period followed with N conservation management practices could offer a promising N2O mitigation strategy in sugarcane farming. Further investigation is required to provide guidance on N and water management following soybean fallow to maintain sugar productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few data exist on direct greenhouse gas emissions from pen manure at beef feedlots. However, emission inventories attempt to account for these emissions. This study used a large chamber to isolate N2O and CH4 emissions from pen manure at two Australian commercial beef feedlots (stocking densities, 13-27 m(2) head) and related these emissions to a range of potential emission control factors, including masses and concentrations of volatile solids, NO3-, total N, NH4+, and organic C (OC), and additional factors such as total manure mass, cattle numbers, manure pack depth and density, temperature, and moisture content. Mean measured pen N2O emissions were 0.428 kg ha(-1) d(-1) (95% confidence interval [CI], 0.252-0.691) and 0.00405 kg ha(-1) d(-1) (95% CI, 0.00114-0.0110) for the northern and southern feedlots, respectively. Mean measured CH4 emission was 0.236 kg ha(-1) d(-1) (95% CI, 0.163-0.332) for the northern feedlot and 3.93 kg ha(-1) d(-1) (95% CI, 2.58-5.81) for the southern feedlot. Nitrous oxide emission increased with density, pH, temperature, and manure mass, whereas negative relationships were evident with moisture and OC. Strong relationships were not evident between N2O emission and masses or concentrations of NO3- or total N in the manure. This is significant because many standard inventory calculation protocols predict N2O emissions using the mass of N excreted by the animal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land-applied manures produce nitrous oxide (N2O), a greenhouse gas (GHG). Land application can also result in ammonia (NH3) volatilisation, leading to indirect N2O emissions. Here, we summarise a glasshouse investigation into the potential for vermiculite, a clay with a high cation exchange capacity, to decrease N2O emissions from livestock manures (beef, pig, broiler, layer), as well as urea, applied to soils. Our hypothesis is that clays adsorb ammonium, thereby suppressing NH3 volatilisation and slowing N2O emission processes. We previously demonstrated the ability of clays to decrease emissions at the laboratory scale. In this glasshouse work, manure and urea application rates varied between 50 and 150 kg nitrogen (N)/ha. Clay : manure ratios ranged from 1 : 10 to 1 : 1 (dry weight basis). In the 1-year trial, the above-mentioned N sources were incorporated with vermiculite in 1 L pots containing Sodosol and Ferrosol growing a model pasture (Pennisetum clandestinum or kikuyu grass). Gas emissions were measured periodically by placing the pots in gas-tight bags connected to real-time continuous gas analysers. The vermiculite achieved significant (P ≤ 0.05) and substantial decreases in N2O emissions across all N sources (70% on average). We are currently testing the technology at the field scale; which is showing promising emission decreases (~50%) as well as increases (~20%) in dry matter yields. This technology clearly has merit as an effective GHG mitigation strategy, with potential associated agronomic benefits, although it needs to be verified by a cost–benefit analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantifying nitrous oxide (N(2)O) fluxes, a potent greenhouse gas, from soils is necessary to improve our knowledge of terrestrial N(2)O losses. Developing universal sampling frequencies for calculating annual N(2)O fluxes is difficult, as fluxes are renowned for their high temporal variability. We demonstrate daily sampling was largely required to achieve annual N(2)O fluxes within 10% of the best estimate for 28 annual datasets collected from three continents, Australia, Europe and Asia. Decreasing the regularity of measurements either under- or overestimated annual N(2)O fluxes, with a maximum overestimation of 935%. Measurement frequency was lowered using a sampling strategy based on environmental factors known to affect temporal variability, but still required sampling more than once a week. Consequently, uncertainty in current global terrestrial N(2)O budgets associated with the upscaling of field-based datasets can be decreased significantly using adequate sampling frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern dairy farming in Australia relies on substantial inputs of fertiliser nitrogen (N) to underpin economic production. However, N lost from dairy systems represents an opportunity cost and can pose a number of environmental risks. Nitrogen cycle inhibitors can be co-applied with N fertilisers to slow the conversion of urea to NH4+ to reduce losses via volatilisation, and slow the conversion of NH4+ to NO3- to minimize leaching of NO3- and gaseous losses via nitrification and denitrification. In a field campaign in a high input ryegrass-kikuyu pasture system we compared the soil N pools, losses and pasture production between a) urea coated with the nitrification inhibitor (3,4-dimethyl pyrazole phosphate - DMPP) b) urea coated with the urease inhibitor (N-(n-butyl) thiophosphoric triamide - NBPT) and c) standard urea. There was no treatment effect (P>0.05) on soil mineral N, pasture yield, N2O flux nor leaching of NO3- cf. standard urea. We hypothesise that at our site, because gaseous losses were highly episodic (rainfall was erratic and displayed no seasonal rainfall nor soil wetting pattern) that there was a lack of coincidence of N application and conditions conducive to gaseous losses, thus the effectiveness of the inhibitor products was minimal and did not result in an increase in pasture yield. There remains a paucity of knowledge on N cycle inhibitors in relation to their effective use in field system to increase N use efficiency. Further research is required to define under what field conditions inhibitor products are effective in order to be able to provide accurate advice to managers of nitrogen in production systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbial activity in soils is the main source of nitrous oxide (N2O) to the atmosphere. Nitrous oxide is a strong greenhouse gas in the troposphere and participates in ozone destructive reactions in the stratosphere. The constant increase in the atmospheric concentration, as well as uncertainties in the known sources and sinks of N2O underline the need to better understand the processes and pathways of N2O in terrestrial ecosystems. This study aimed at quantifying N2O emissions from soils in northern Europe and at investigating the processes and pathways of N2O from agricultural and forest ecosystems. Emissions were measured in forest ecosystems, agricultural soils and a landfill, using the soil gradient, chamber and eddy covariance methods. Processes responsible for N2O production, and the pathways of N2O from the soil to the atmosphere, were studied in the laboratory and in the field. These ecosystems were chosen for their potential importance to the national and global budget of N2O. Laboratory experiments with boreal agricultural soils revealed that N2O production increases drastically with soil moisture content, and that the contribution of the nitrification and denitrification processes to N2O emissions depends on soil type. Laboratory study with beech (Fagus sylvatica) seedlings demonstrated that trees can serve as conduits for N2O from the soil to the atmosphere. If this mechanism is important in forest ecosystems, the current emission estimates from forest soils may underestimate the total N2O emissions from forest ecosystems. Further field and laboratory studies are needed to evaluate the importance of this mechanism in forest ecosystems. The emissions of N2O from northern forest ecosystems and a municipal landfill were highly variable in time and space. The emissions of N2O from boreal upland forest soil were among the smallest reported in the world. Despite the low emission rates, the soil gradient method revealed a clear seasonal variation in N2O production. The organic topsoil was responsible for most of the N2O production and consumption in this forest soil. Emissions from the municipal landfill were one to two orders of magnitude higher than those from agricultural soils, which are the most important source of N2O to the atmosphere. Due to their small areal coverage, landfills only contribute minimally to national N2O emissions in Finland. The eddy covariance technique was demonstrated to be useful for measuring ecosystem-scale emissions of N2O in forest and landfill ecosystems. Overall, more measurements and integration between different measurement techniques are needed to capture the large variability in N2O emissions from natural and managed northern ecosystems.