991 resultados para Nitrogen recycling nutrition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of foliar application of molybdenum on agronomic characteristics and yield of wheat in a no-till system. The experiment was carried out in a clayey Rhodic Hapludox, in Maripa, State of Parana, Brazil. The experimental design was randomized blocks with five replications. Treatments consisted of four doses of molybdenum (0, 13.8, 27.6 and 55.2 g ha(-1) Mo), divided into two foliar applications, the first at tillering (18 days after plant emergence) and the second at the boot stage (65 days after emergence). The foliar application of Mo up to a dose of 35 g ha-1 increased the number of spikes per square meter and yield of wheat; however, it had no effect on the agronomic characteristics of the crop in a no-till system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho objetivou avaliar os efeitos da adubação com N e K no desenvolvimento de mudas de maracujazeiro-amarelo (Passiflora edulis) cultivadas em Latossolo Vermelho distrófico. O delineamento experimental foi o inteiramente casualizado, com três repetições, num esquema fatorial 4 x 4, com 4 doses de N (zero, 150, 300 e 600mg de N dm-3) e quatro de K (zero, 75, 150 e 300mg de K dm-3), parceladas em quatro vezes. A unidade experimental foi constituída por vasos de 3,3L. Após 84 dias da germinação, foram avaliados: altura da planta, o diâmetro do caule, o número de folhas e a área foliar. O melhor desenvolvimento das mudas de maracujazeiro ocorreu com as doses de 150mg de N dm-3 e de 300mg de K dm-3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: The objective of this study was to perform a nutritional assessment of acute kidney injury patients and to identify the relationship between nutritional markers and outcomes.METHOD: This was a prospective and observational study. Patients who were hospitalized at the Hospital of Botucatu School of Medicine were evaluated between January 2009 and December 2011. We evaluated a total of 133 patients with a clinical diagnosis of acute kidney injury and a clinical presentation suggestive of acute tubular necrosis. We explored the associations between clinical, laboratory and nutritional markers and in hospital mortality. Multivariable logistic regression was used to adjust for confounding and selection bias.RESULTS: Non-survivor patients were older (67 +/- 14 vs. 59 +/- 16 years) and exhibited a higher prevalence of sepsis (57.1 vs. 21.4%) and higher Acute Tubular Necrosis-Individual Severity Scores (0.60 +/- 0.22 vs. 0.41 +/- 0.21) than did survivor patients. Based on the multivariable analysis, laboratorial parameters such as blood urea nitrogen and C-reactive protein were associated with a higher risk of death (OR: 1.013, p = 0.0052; OR: 1.050, p = 0.01, respectively), and nutritional parameters such as low calorie intake, higher levels of edema, lower resistance based on bioelectrical impedance analysis and a more negative nitrogen balance were significantly associated with a higher risk of death (OR: 0.950, p = 0.01; OR: 1.138, p = 0.03; OR: 0.995, p = 0.03; OR: 0.934, p = 0.04, respectively).CONCLUSIONS: In acute kidney injury patients, a nutritional assessment seems to identify nutritional markers that are associated with outcome. In this study, a low caloric intake, higher C-reactive protein levels, the presence of edema, a lower resistance measured during a bioelectrical impedance analysis and a lower nitrogen balance were significantly associated with risk of death in acute kidney injury patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of feed restriction on water balance and nutrient utilization was investigated in individually penned Boer x Saanen kids. Twenty-two male Boer x Saanen kids with an initial average live weight (LW) of 15 kg were used. Seven kids were slaughtered at the beginning of the experiment (reference animals) and the remainders were allocated to one of the three treatments (0, 30 and 60% restriction) and therefore there were five kids per treatment. The feed intake for the 0% restriction treatment animals determined the intake for the animals in the 30 and 60% restriction treatment. When the animals in the 0% restriction treatment group reached 25 kg LW, the animals in the 30 and 60% restriction treatment groups were also slaughtered. There was a negative relationship between DMI and water intake. The digestibility coefficients for DM, OM, carbohydrates, ash, ether extract, energy, NDF, ADF and lignin did not differ between treatments, whereas the digestibility coefficient for CP was different between treatment groups. The highest metabolic water production was in animals in the 0% restriction treatment group. No significant differences were observed in the composition of gastro-intestinal tract contents of the goats in the different treatments. Lower water retention was found in the animals in the 60% restriction treatment group. The study showed that feed restriction affected water intake, CP digestibility and water retention in the body of the kid goats. This experiment demonstrated that DM:water intake ratio changed when severe feed restriction was applied (60% restriction) and water was freely available. It shows a different pattern of behaviour of penned goats, particularly if feed intake is restricted and perhaps caution is needed to extrapolate results from nutritional and physiological trials in pens to goats at pasture. (c) 2005 Elsevier BX All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time-series data collected at 1290 and 3439 m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen (minimum concentration below 2 µmol kg**-1 at 40 m depth) anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes of up to 151 mg m**-2 d**-1, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks of ~15 and 13.3 mg m**-2 d**-1, respectively, were observed in February-March 2010 when the eddy approached the CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated with that of organic carbon, in particular in the deep trap samples, suggesting a tight coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/meso-pelagic signatures to the bathypelagic traps. We suspect that the two- to three-fold increase in particle fluxes with depth as well as the tight coupling of mineral dust and organic carbon in the deep trap samples might be explained by particle focusing processes within the deeper part of the eddy. Molar C : N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some productivity under nutrient (nitrate) limitation occurred in the euphotic zone of the eddy in the beginning of 2010 or that a local nitrogen recycling took place. The d15N record showed a decrease from 5.21 to 3.11 per mil from January to March 2010, while the organic carbon and nitrogen fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive, but nutrient depletion and/or an increased availability of dust as a ballast mineral for organic-rich aggregates might have contributed. Rapid remineralisation of sinking organic-rich particles could have contributed to oxygen depletion at shallow depth. Although the eddy formed in the West African coastal area in summer 2009, no indications of coastal flux signatures (e.g. from diatoms) were found in the sediment trap samples, confirming the assumption that the suboxia developed within the eddy en route. However, we could not detect biomarkers indicative of the presence of anammox (anaerobic ammonia oxidation) bacteria or green sulfur bacteria thriving in photic zone suboxia/hypoxia, i.e. ladderane fatty acids and isorenieratene derivatives, respectively. This could indicate that suboxic conditions in the eddy had recently developed and/or the respective bacterial stocks had not yet reached detection thresholds. Another explanation is that the fast-sinking organic-rich particles produced in the surface layer did not interact with bacteria from the suboxic zone below. Carbonate fluxes dropped from -52 to 21.4 mg m**-2 d**-1 from January to February 2010, respectively, mainly due to reduced contribution of shallow-dwelling planktonic foraminifera and pteropods. The deep-dwelling foraminifera Globorotalia menardii, however, showed a major flux peak in February 2010, most probably due to the suboxia/hypoxia. The low oxygen conditions forced at least some zooplankton to reduce diel vertical migration. Reduced "flux feeding" by zooplankton in the epipelagic could have contributed to the enhanced fluxes of organic materials to the bathypelagic traps during the eddy passage. Further studies are required on eddy-induced particle production and preservation processes and particle focusing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the "red edge" of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI-CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m-2) from Zadoks 14-37 with an r2 of 0.97 and RMSE of 0.65 g N m-2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pratylenchus thornei is a major pathogen of wheat in Australia. Two glasshouse experiments with four wheat cultivars that had different final populations (Pf) of P. thornei in the field were used to optimise conditions for assessing resistance. With different initial populations (Pi) ranging up to 5250 P. thornei/kg soil, Pf of P. thornei increased to 16 weeks after sowing, and then decreased at 20 weeks in some cultivar x Pi combinations. The population dynamics of P. thornei up to 16 weeks were best described by a modified exponential equation P f (t) = aP i e kt where P f (t) is the final population density at time t, P i is the initial population density, a is the proportion of P i that initiates population development, and k is the intrinsic rate of increase of the population. The cultivar GS50a had very low k values at Pi of 5250 and 1050 indicating its resistance, Suneca and Potam had high k values indicating susceptibility, whereas intolerant Gatcher had a low value at the higher Pi and a high value at the lower Pi. Nitrate fertiliser increased plant growth and Pf values of susceptible cultivars, but in unplanted soil it decreased Pf. Nematicide (aldicarb 5 mg/kg soil) killed P. thornei more effectively in planted than in unplanted soil and increased plant growth particularly in the presence of N fertiliser. In both experiments, the wheat cultivars Suneca and Potam were more susceptible than the cultivar GS50a reflecting field results. The method chosen to discriminate wheat cultivars was to assess Pf after growth for 16 weeks in soil with Pi ~1050–5250 P. thornei/kg soil and fertilised with 200 mg NO3–N/kg soil.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two controlled microcosm experiments aimed at a critical re-assessment of the contributions of divergent arbuscular mycorrhizal (AM) fungi to plant mineral nutrition were established that specifically targeted Plantago lanceolata–Glomus intraradices (B.B/E) and –Gigaspora margarita (BEG 34) symbioses developed in a native, nutrient limited, coastal dune soil. Plant tissue nitrogen (N), phosphorus (P) and potassium (K) status as well as plant growth parameters and levels of mycorrhizal colonization were assessed at harvest. In addition to the general well-established mycorrhizal facilitation of P uptake, the study was able to demonstrate a G. intraradices-specific contribution to improved plant nitrogen and potassium nutrition. In the two respective experiments, G. intraradices-inoculated plants had 27.8% and 40.8% more total N and 55.8% and 23.3% more total K when compared to Gi. margarita inoculated counterparts. Dissimilar overall contribution of the two isolates to plant nutrition was identified in AM-genus specific differences in plant tissue N:P:K ratios. G. intraradices inoculated and non-mycorrhizal plants generally exhibited N:P:K ratios indicative of P limitation whereas for Gi.margarita mycorrhizal plants, corresponding ratios strongly implied either N or K limitation. The study provides further evidence highlighting AM functional biodiversity in respect to plant nutrient limitation experienced by mycorrhizal P. lanceolata in an ecologically relevant soil system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Crop species with the C-4 photosynthetic pathway are more efficient in assimilating N than C-3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum) and congo grass (Brachiaria ruziziensis) with the C-4 photosynthetic pathway, and black oat (Arena Strigosa) and triticale (X Triticosecale), with the C-3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha(-1) of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C-4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C-4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Both N excess and deficiency may affect cotton yield and quality. It would therefore be useful to base the N management fertilization on the monitoring of the nutritional status. This study investigated the correlations among the following determination methods of the N nutritional status of cotton (Gossypium hirsutum L., var. Latifolia): chlorophyll readings (SPAD-502 (R), Minolta), specific-ion nitrate meter (Nitrate Meter C-141, Horiba-Cardy (R)), and laboratory analysis (conventional foliar diagnosis). Samples were taken weekly from two weeks before flowering to the fifth week after the first flower. The experiment was conducted on the Fazenda Santa Tereza, Itapeva, State of São Paulo, Brazil. The crop was fertilized with 40 kg ha(-1) N at planting and 0, 30, 60, 90, and 120 kg ha(-1) of side-dressed N. The range of leaf N contents reported as adequate for samples taken 80-90 days after plant emergence (traditional foliar diagnosis) may be used as reference from the beginning of flowering when the plant is not stressed. Specific-ion nitrate meter readings can be used as a nutritional indicator of cotton nutrition from one week after pinhead until the third week of flowering. In this case, plants are well-nourished when readings exceed 8,000 mg L(-1) NO(3)(-). The chlorophyll meter can also be used to estimate the nutritional status of cotton from the third week of flowering. In this case the readings should be above 48 in well-nourished plants.