979 resultados para Nitrogen analysis
Resumo:
A análise foliar de nitrogênio, comumente empregada em laboratórios de rotina, é destrutiva e nem sempre rápida, obstante para a tomada de decisão. Objetivou-se com a pesquisa estudar as medidas SPAD, em mudas de goiabeira (Psidium guajava L.) cultivada em solução nutritiva completa, observando-se as diferenças entre cultivares, épocas de amostragem e tipos de folhas avaliadas. O delineamento foi inteiramente casualizado, com quatro repetições, em parcelas sub-subdivididas. Assim, foi utilizada como parcela as duas cultivares de goiabeira (Paluma e Século XXI), como subparcelas os tipos de folhas (+1, +2 e +3) e, cinco épocas de amostragem ao longo do período experimental (60, 75, 90, 105 e 120 dias, após o transplantio de mudas) Concluiu-se que a leitura SPAD em mudas de goiabeira é influenciada pela cultivar, tipo de folha e época de amostragem. O terceiro par de folhas mostrou-se mais adequado para avaliar o estado nutricional do nitrogênio nas mudas de goiabeira a partir da leitura SPAD. As cultivares de goiabeira apresentaram diferença na leitura SPAD apenas aos 60 e 90 dias após o transplantio, independentemente do tipo de folha.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Amino acid composition of bottom sediments on the northwestern continental slope of Africa is determined. Correlation similar to that found earlier in Caspian sediments between type of amino acid spectra of Atlantic sediments and distribution of reduced forms of sulfur in them is found. These correlations result from geochemical activity of benthic biocoenosis, which transforms sulfur compounds.
Resumo:
Elemental composition, functional groups, and molecular mass distribution were determined in humic acids from the Western Pacific abyssal and coastal bottom sediments. Humic acid structure was studied by oxidative degradation with alkaline nitrobenzene and potassium permanganate, p-coumaric, guaiacilic, and syringilic structural units typical for lignin of terrestrial plants were identified in humic acids by chromatographic analysis of oxidation products. Polysubstituted and polycondensed aromatic systems with minor proportion of aliphatic structures were basic structural units of humic acids in abyssal sediments.
Resumo:
Assimilation of nitrate and various other inorganic nitrogen compounds by different yeasts was investigated. Nitrate, nitrite, hydroxylamine, hydrazine, ammonium sulphate, urea and L-asparagine were tested as sole sources of nitrogen for the growth of Candida albicans, C. pelliculosa, Debaryomyces hansenii, Saccharomyces cerevisiae, C. tropicalis, and C. utilis. Ammonium sulphate and L-asparagine supported the growth of all the yeasts tested except D. hansenii while hydroxylamine and hydrazine failed to support the growth of any. Nitrate and nitrite were assimilated only by C. utilis. Nitrate utilization by C. utilis was also accompanied by the enzymatic activities of NAD(P)H: nitrate oxidoreductase (EC 1.6.6.2) and NAD(P)H: nitrite oxidoreductase (EC 1.6.6.4), but not reduced methyl viologen-or FAD-nitrate oxidoreductases (EC 1.7.99.4). It is demonstrated here that nitrate and nitrite reductase activities are responsible for the ability of C. utilis to assimilate primary nitrogen.
Resumo:
Cyperus iria is a weed of rice with widespread occurrence throughout the world. Because of concerns about excessive and injudicious use of herbicides, cultural weed management approaches that are safe and economical are needed. Developing such approaches will require a better understanding of weed biology and ecology, as well as of weed response to increases in crop density and nutrition. Knowledge of the effects of nitrogen (N) fertilizer on crop-weed competitive interactions could also help in the development of integrated weed management strategies. The present study was conducted in a screenhouse to determine the effects of rice planting density (0, 5, 10, and 20 plants pot−1) and N rate (0, 50, 100, and 150 kg ha−1) on the growth of C. iria. Tiller number per plant decreased by 73–88%, leaf number by 85–94%, leaf area by 85–98%, leaf biomass by 92–99%, and inflorescence biomass by 96–99% when weed plants were grown at 20 rice plants pot−1 (i.e., 400 plants m−2) compared with weed plants grown alone. All of these parameters increased when N rates were increased. On average, weed biomass increased by 118–389% and rice biomass by 121–275% with application of 50–150 kg N ha−1, compared to control. Addition of N favored weed biomass production relative to rice biomass. Increased N rates reduced the root-to-shoot weight ratio of C. iria. Rice interference reduced weed growth and biomass and completely suppressed C. iria when no N was applied at high planting densities (i.e., 20 plants pot−1). The weed showed phenotypic plasticity in response to N application, and the addition of N increased the competitive ability of the weed over rice at densities of 5 and 10 rice plants pot−1 compared with 20 plants pot−1. The results of the present study suggest that high rice density (i.e., 400 plants m−2) can help suppress C. iria growth even at high N rates (150 kg ha−1).
Resumo:
The chemical groups which take part in the proton transfer reaction in bacteriorhodopsin have been studied by ab initio quantum chemical methods. The various factors such as conjugation with a linear system, electron delocalization of the guanidine type, cis-trans isomerism, geometry distortion and hydrogen bonding with charged groups can influence the properties of a given chemical group. Several systems are studied at 4-31G and STO-3G levels. Some of the Schiff-base analogues and guanidine type molecules are characterized by their molecular orbital diagrams, energy levels and the nature of charge distribution. Also, the effects of the above-mentioned factors on proton affinity are studied. It is hoped that the values thus obtained can be helpful in evaluating various structural models for proton transfer.
Resumo:
The participation of a nitrogen atom acting as an electrophile in pnicogen bonding, a hitherto unexplored interaction has been established by experimental charge density analysis. QTAIM and NBO analyses ratify this observation.
Resumo:
We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 degrees C), decomposition temperature (202 degrees C) as that with zinc acetylacetonate (136 degrees C, 220 degrees C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process. (c) 2015 Elsevier B.V. All rights reserved.
Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis
Resumo:
We investigated differences in delta N-15 of seston and icefishes from seven freshwater ecosystems with different trophic states in China. An increase of seston delta N-15 values was accompanied by an increase of total nitrogen and phosphorus concentrations. Significantly positive correlations were observed between delta N-15 of icefishes and delta N-15 of seston, total nitrogen and phosphorus concentrations. This study demonstrated that icefishes could be preferred indicators of anthropogenic contamination in test systems because they integrated waste inputs over long time periods and reflected the movement of waste through the pelagic food chain.