978 resultados para New high


Relevância:

100.00% 100.00%

Publicador:

Resumo:

All immunoglobulins and T-cell receptors throughout phylogeny share regions of highly conserved amino acid sequence. To identify possible primitive immunoglobulins and immunoglobulin-like molecules, we utilized 3' RACE (rapid amplification of cDNA ends) and a highly conserved constant region consensus amino acid sequence to isolate a new immunoglobulin class from the sandbar shark Carcharhinus plumbeus. The immunoglobulin, termed IgW, in its secreted form consists of 782 amino acids and is expressed in both the thymus and the spleen. The molecule overall most closely resembles mu chains of the skate and human and a new putative antigen binding molecule isolated from the nurse shark (NAR). The full-length IgW chain has a variable region resembling human and shark heavy-chain (VH) sequences and a novel joining segment containing the WGXGT motif characteristic of H chains. However, unlike any other H-chain-type molecule, it contains six constant (C) domains. The first C domain contains the cysteine residue characteristic of C mu1 that would allow dimerization with a light (L) chain. The fourth and sixth domains also contain comparable cysteines that would enable dimerization with other H chains or homodimerization. Comparison of the sequences of IgW V and C domains shows homology greater than that found in comparisons among VH and C mu or VL, or CL thereby suggesting that IgW may retain features of the primordial immunoglobulin in evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air pollution is one of the greatest health risks in the world. At the same time, the strong correlation with climate change, as well as with Urban Heat Island and Heat Waves, make more intense the effects of all these phenomena. A good air quality and high levels of thermal comfort are the big goals to be reached in urban areas in coming years. Air quality forecast help decision makers to improve air quality and public health strategies, mitigating the occurrence of acute air pollution episodes. Air quality forecasting approaches combine an ensemble of models to provide forecasts from global to regional air pollution and downscaling for selected countries and regions. The development of models dedicated to urban air quality issues requires a good set of data regarding the urban morphology and building material characteristics. Only few examples of air quality forecast system at urban scale exist in the literature and often they are limited to selected cities. This thesis develops by setting up a methodology for the development of a forecasting tool. The forecasting tool can be adapted to all cities and uses a new parametrization for vegetated areas. The parametrization method, based on aerodynamic parameters, produce the urban spatially varying roughness. At the core of the forecasting tool there is a dispersion model (urban scale) used in forecasting mode, and the meteorological and background concentration forecasts provided by two regional numerical weather forecasting models. The tool produces the 1-day spatial forecast of NO2, PM10, O3 concentration, the air temperature, the air humidity and BLQ-Air index values. The tool is automatized to run every day, the maps produced are displayed on the e-Globus platform, updated every day. The results obtained indicate that the forecasting output were in good agreement with the observed measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article describes the development and evaluation of the U.K.’s new High-Resolution Global Environmental Model (HiGEM), which is based on the latest climate configuration of the Met Office Unified Model, known as the Hadley Centre Global Environmental Model, version 1 (HadGEM1). In HiGEM, the horizontal resolution has been increased to 0.83° latitude × 1.25° longitude for the atmosphere, and 1/3° × 1/3° globally for the ocean. Multidecadal integrations of HiGEM, and the lower-resolution HadGEM, are used to explore the impact of resolution on the fidelity of climate simulations. Generally, SST errors are reduced in HiGEM. Cold SST errors associated with the path of the North Atlantic drift improve, and warm SST errors are reduced in upwelling stratocumulus regions where the simulation of low-level cloud is better at higher resolution. The ocean model in HiGEM allows ocean eddies to be partially resolved, which dramatically improves the representation of sea surface height variability. In the Southern Ocean, most of the heat transports in HiGEM is achieved by resolved eddy motions, which replaces the parameterized eddy heat transport in the lower-resolution model. HiGEM is also able to more realistically simulate small-scale features in the wind stress curl around islands and oceanic SST fronts, which may have implications for oceanic upwelling and ocean biology. Higher resolution in both the atmosphere and the ocean allows coupling to occur on small spatial scales. In particular, the small-scale interaction recently seen in satellite imagery between the atmosphere and tropical instability waves in the tropical Pacific Ocean is realistically captured in HiGEM. Tropical instability waves play a role in improving the simulation of the mean state of the tropical Pacific, which has important implications for climate variability. In particular, all aspects of the simulation of ENSO (spatial patterns, the time scales at which ENSO occurs, and global teleconnections) are much improved in HiGEM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nickel cyanide is a layered material showing markedly anisotropic behaviour. High-pressure neutron diffraction measurements show that at pressures up to 20.1 kbar, compressibility is much higher in the direction perpendicular to the layers, c, than in the plane of the strongly chemically bonded metal-cyanide sheets. Detailed examination of the behaviour of the tetragonal lattice parameters, a and c, as a function of pressure reveal regions in which large changes in slope occur, for example, in c(P) at 1 kbar. The experimental pressure dependence of the volume data is fitted to a bulk modulus, B0, of 1050 (20) kbar over the pressure range 0–1 kbar, and to 124 (2) kbar over the range 1–20.1 kbar. Raman spectroscopy measurements yield additional information on how the structure and bonding in the Ni(CN)2 layers change with pressure and show that a phase change occurs at about 1 kbar. The new high-pressure phase, (Phase PII), has ordered cyanide groups with sheets of D4h symmetry containing Ni(CN)4 and Ni(NC)4 groups. The Raman spectrum of phase PII closely resembles that of the related layered compound, Cu1/2Ni1/2(CN)2, which has previously been shown to contain ordered C≡N groups. The phase change, PI to PII, is also observed in inelastic neutron scattering studies which show significant changes occurring in the phonon spectra as the pressure is raised from 0.3 to 1.5 kbar. These changes reflect the large reduction in the interlayer spacing which occurs as Phase PI transforms to Phase PII and the consequent increase in difficulty for out-of-plane atomic motions. Unlike other cyanide materials e.g. Zn(CN)2 and Ag3Co(CN)6, which show an amorphization and/or a decomposition at much lower pressures (~100 kbar), Ni(CN)2 can be recovered after pressurising to 200 kbar, albeit in a more ordered form.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a new high power factor three-phase rectifier based on a Y-connected differential autotransformer with reduced kVA and 18-pulse input current followed by three DC-DC boost converters. The topology provides a regulated output voltage and natural three-phase input power factor correction. The lowest input current harmonic components are the 17th and the 19th. Three boost converters, with constant input currents and regulated parallel connected output voltages are used to process 4kW each one. Analytical results from Fourier analyses of winding currents and the vector diagram of winding voltages are presented. Simulation results to verify the proposed concept and experimental results are shown in the paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the past decade microbeam radiation therapy has evolved from preclinical studies to a stage in which clinical trials can be planned, using spatially fractionated, highly collimated and high intensity beams like those generated at the x-ray ID17 beamline of the European Synchrotron Radiation Facility. The production of such microbeams typically between 25 and 100 microm full width at half maximum (FWHM) values and 100-400 microm center-to-center (c-t-c) spacings requires a multislit collimator either with fixed or adjustable microbeam width. The mechanical regularity of such devices is the most important property required to produce an array of identical microbeams. That ensures treatment reproducibility and reliable use of Monte Carlo-based treatment planning systems. New high precision wire cutting techniques allow the fabrication of these collimators made of tungsten carbide. We present a variable slit width collimator as well as a single slit device with a fixed setting of 50 microm FWHM and 400 microm c-t-c, both able to cover irradiation fields of 50 mm width, deemed to meet clinical requirements. Important improvements have reduced the standard deviation of 5.5 microm to less than 1 microm for a nominal FWHM value of 25 microm. The specifications of both devices, the methods used to measure these characteristics, and the results are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamic effects of high-speed trains on viaducts are important issues for the design of the structures, as well as for the consideration of safe running conditions for the trains. In this work we start by reviewing the relevance of some basic design aspects. The significance of impact factor envelopes for moving loads is considered first. Resonance which may be achieved for high-speed trains requires dynamic analysis, for which some key aspects are discussed. The relevance of performing a longitudinal distribution of axle loads, the number of modes taken in analysis, and the consideration of vehicle-structure interaction are discussed with representative examples. The lateral dynamic effects of running trains on bridges is of importance for laterally compliant viaducts, such as some very tall structures erected in new high-speed lines. The relevance of this study is mainly for the safety of the traffic, considering both internal actions such as the hunting motion as well as external actions such as wind or earthquakes [1]. These studies require three-dimensional dynamic coupled vehicle-bridge models, and consideration of wheel to rail contact, a phenomenon which is complex and costly to model in detail. We describe here a fully nonlinear coupled model, described in absolute coordinates and incorporated into a commercial finite element framework [2]. The wheel-rail contact has been considered using a FastSim algorithm which provides a compromise between accuracy and computational cost, and captures the main nonlinear response of the contact interface. Two applications are presented, firstly to a vehicle subject to a strong wind gust traversing a bridge, showing the relevance of the nonlinear wheel-rail contact model as well as the dynamic interaction between bridge and vehicle. The second application is to a real HS viaduct with a long continuous deck and tall piers and high lateral compliance [3]. The results show the safety of the traffic as well as the importance of considering features such as track alignment irregularities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular Information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability In three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced similar to 50 scoreable polymorphic DNA markers, between individuals of three Independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from Individual DNA samples that had been combined to create the bulked samples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The short-lived Hf-182-W-182-isotope system is an ideal clock to trace core formation and accretion processes of planets. Planetary accretion and metal/silicate fractionation chronologies are calculated relative to the chondritic Hf-182-W-182-isotope evolution. Here, we report new high-precision W-isotope data for the carbonaceous chondrite Allende that are much less radiogenic than previously reported and are in good agreement with published internal Hf-W chronometry of enstatite chondrites. If the W-isotope composition of terrestrial rocks, representing the bulk silicate Earth, is homogeneous and 2.24 epsilon(182W) units more radiogenic than that of the bulk Earth, metal/silicate differentiation of the Earth occurred very early. The new W-isotope data constrain the mean time of terrestrial core formation to 34 million years after the start of solar system accretion. Early terrestrial core formation implies rapid terrestrial accretion, thus permitting formation of the Moon by giant impact while Hf-182 was still alive. This could explain why lunar W-isotopes are more radiogenic than the terrestrial value. Copyright (C) 2002 Elsevier Science Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Demand for power is growing every day, mainly due to emerging economies in countries such as China, Russia, India, and Brazil. During the last 50 years steam pressure and temperature in power plants have been continuously raised to improve thermal efficiency. Recent efforts to improve efficiency leads to the development of a new generation of heat recovery steam generator, where the Benson once-through technology is applied to improve the thermal efficiency. The main purpose of this paper is to analyze the mechanical behavior of a high pressure superheater manifold by applying finite element modeling and a finite element analysis with the objective of analyzing stress propagation, leading to the study of damage mechanism, e.g., uniaxial fatigue, uniaxial creep for life prediction. The objective of this paper is also to analyze the mechanical properties of the new high temperature resistant materials in the market such as 2Cr Bainitic steels (T/P23 and T/P24) and also the 9-12Cr Martensitic steels (T/P91, T/P92, E911, and P/T122). For this study the design rules for construction of power boilers to define the geometry of the HPSH manifold were applied.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new high performance architecture for the computation of all the DCT operations adopted in the H.264/AVC and HEVC standards is proposed in this paper. Contrasting to other dedicated transform cores, the presented multi-standard transform architecture is supported on a completely configurable, scalable and unified structure, that is able to compute not only the forward and the inverse 8×8 and 4×4 integer DCTs and the 4×4 and 2×2 Hadamard transforms defined in the H.264/AVC standard, but also the 4×4, 8×8, 16×16 and 32×32 integer transforms adopted in HEVC. Experimental results obtained using a Xilinx Virtex-7 FPGA demonstrated the superior performance and hardware efficiency levels provided by the proposed structure, which outperforms its more prominent related designs by at least 1.8 times. When integrated in a multi-core embedded system, this architecture allows the computation, in real-time, of all the transforms mentioned above for resolutions as high as the 8k Ultra High Definition Television (UHDTV) (7680×4320 @ 30fps).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report new high-precision U/Pb ages and geochemical data from the Chalten Plutonic Complex to better understand the link between magmatism and tectonics in Southern Patagonia. This small intrusion located in the back-arc region east of the Patagonian Batholith provides important insights on the role of arc migration and subduction erosion. The Chalten Plutonic Complex consists of a suite of calc-alkaline gabbroic to granitic rocks, which were emplaced over 530 kyr between 16.90 +/- 0.05 Ma and 16.37 +/- 0.02 Ma. A synthesis of age and geochemical data from other intrusions in Patagonia reveals (a) striking similarities between the Chalten Plutonic Complex and the Neogene intrusions of the batholith and differences to other back-arc intrusions such as Torres del Paine (b) a distinct E-W trend of calc-alkaline magmatic activity between 20 and 17 Ma. We propose that this trend reflects the eastward migration of the magmatic arc, and the consistent age pattern between the subduction segments north and south of the Chile triple junction suggests a causal relation with a period of fast subduction of the Farallon-Nazca plate during the Early Miocene. Previously proposed flat slab models are not consistent with the present location and morphology of the Southern Patagonian Batholith. We advocate, alternatively, that migration of the magmatic arc is caused by subduction erosion due to the increasing subduction velocities during the Early Miocene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The atmospheric component of the United Kingdom’s new High-resolution Global Environmental Model (HiGEM) has been run with interactive aerosol schemes that include biomass burning and mineral dust. Dust emission, transport, and deposition are parameterized within the model using six particle size divisions, which are treated independently. The biomass is modeled in three nonindependent modes, and emissions are prescribed from an external dataset. The model is shown to produce realistic horizontal and vertical distributions of these aerosols for each season when compared with available satellite- and ground-based observations and with other models. Combined aerosol optical depths off the coast of North Africa exceed 0.5 both in boreal winter, when biomass is the main contributor, and also in summer, when the dust dominates. The model is capable of resolving smaller-scale features, such as dust storms emanating from the Bode´ le´ and Saharan regions of North Africa and the wintertime Bode´ le´ low-level jet. This is illustrated by February and July case studies, in which the diurnal cycles of model variables in relation to dust emission and transport are examined. The top-of-atmosphere annual mean radiative forcing of the dust is calculated and found to be globally quite small but locally very large, exceeding 20 W m22 over the Sahara, where inclusion of dust aerosol is shown to improve the model radiative balance. This work extends previous aerosol studies by combining complexity with increased global resolution and represents a step toward the next generation of models to investigate aerosol–climate interactions. 1. Introduction Accurate modeling of mineral dust is known to be important because of its radiative impact in both numerical weather prediction models (Milton et al. 2008; Haywood et