998 resultados para Neural metabolism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy demand is an important constraint on neural signaling. Several methods have been proposed to assess the energy budget of the brain based on a bottom-up approach in which the energy demand of individual biophysical processes are first estimated independently and then summed up to compute the brain's total energy budget. Here, we address this question using a novel approach that makes use of published datasets that reported average cerebral glucose and oxygen utilization in humans and rodents during different activation states. Our approach allows us (1) to decipher neuron-glia compartmentalization in energy metabolism and (2) to compute a precise state-dependent energy budget for the brain. Under the assumption that the fraction of energy used for signaling is proportional to the cycling of neurotransmitters, we find that in the activated state, most of the energy ( approximately 80%) is oxidatively produced and consumed by neurons to support neuron-to-neuron signaling. Glial cells, while only contributing for a small fraction to energy production ( approximately 6%), actually take up a significant fraction of glucose (50% or more) from the blood and provide neurons with glucose-derived energy substrates. Our results suggest that glycolysis occurs for a significant part in astrocytes whereas most of the oxygen is utilized in neurons. As a consequence, a transfer of glucose-derived metabolites from glial cells to neurons has to take place. Furthermore, we find that the amplitude of this transfer is correlated to (1) the activity level of the brain; the larger the activity, the more metabolites are shuttled from glia to neurons and (2) the oxidative activity in astrocytes; with higher glial pyruvate metabolism, less metabolites are shuttled from glia to neurons. While some of the details of a bottom-up biophysical approach have to be simplified, our method allows for a straightforward assessment of the brain's energy budget from macroscopic measurements with minimal underlying assumptions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose homeostasis requires the tight regulation of glucose utilization by liver, muscle and white or brown fat, and glucose production and release in the blood by liver. The major goal of maintaining glycemia at ∼ 5 mM is to ensure a sufficient flux of glucose to the brain, which depends mostly on this nutrient as a source of metabolic energy. This homeostatic process is controlled by hormones, mainly glucagon and insulin, and by autonomic nervous activities that control the metabolic state of liver, muscle and fat tissue but also the secretory activity of the endocrine pancreas. Activation or inhibition of the sympathetic or parasympathetic branches of the autonomic nervous systems are controlled by glucose-excited or glucose-inhibited neurons located at different anatomical sites, mainly in the brainstem and the hypothalamus. Activation of these neurons by hyper- or hypoglycemia represents a critical aspect of the control of glucose homeostasis, and loss of glucose sensing by these cells as well as by pancreatic β-cells is a hallmark of type 2 diabetes. In this article, aspects of the brain-endocrine pancreas axis are reviewed, highlighting the importance of central glucose sensing in the control of counterregulation to hypoglycemia but also mentioning the role of the neural control in β-cell mass and function. Overall, the conclusions of these studies is that impaired glucose homeostasis, such as associated with type 2 diabetes, but also defective counterregulation to hypoglycemia, may be caused by initial defects in glucose sensing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ochratoxin A (OTA), a fungal contaminant of basic food commodities, is known to be highly cytotoxic, but the pathways underlying adverse effects at subcytotoxic concentrations remain to be elucidated. Recent reports indicate that OTA affects cell cycle regulation. Therefore, 3D brain cell cultures were used to study OTA effects on mitotically active neural stem/progenitor cells, comparing highly differentiated cultures with their immature counterparts. Changes in the rate of DNA synthesis were related to early changes in the mRNA expression of neural stem/progenitor cell markers. OTA at 10nM, a concentration below the cytotoxic level, was ineffective in immature cultures, whereas in mature cultures it significantly decreased the rate of DNA synthesis together with the mRNA expression of key transcriptional regulators such as Sox2, Mash1, Hes5, and Gli1; the cell cycle activator cyclin D2; the phenotypic markers nestin, doublecortin, and PDGFRα. These effects were largely prevented by Sonic hedgehog (Shh) peptide (500ngml(-1)) administration, indicating that OTA impaired the Shh pathway and the Sox2 regulatory transcription factor critical for stem cell self-renewal. Similar adverse effects of OTA in vivo might perturb the regulation of stem cell proliferation in the adult brain and in other organs exhibiting homeostatic and/or regenerative cell proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurons which release atrial natriuretic peptide (ANPergic neurons) have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V) region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V) injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article investigates the relation between stimulus-evoked neural activity and cerebral hemodynamics. Specifically, the hypothesis is tested that hemodynamic responses can be modeled as a linear convolution of experimentally obtained measures of neural activity with a suitable hemodynamic impulse response function. To obtain a range of neural and hemodynamic responses, rat whisker pad was stimulated using brief (less than or equal to2 seconds) electrical stimuli consisting of single pulses (0.3 millisecond, 1.2 mA) combined both at different frequencies and in a paired-pulse design. Hemodynamic responses were measured using concurrent optical imaging spectroscopy and laser Doppler flowmetry, whereas neural responses were assessed through current source density analysis of multielectrode recordings from a single barrel. General linear modeling was used to deconvolve the hemodynamic impulse response to a single "neural event" from the hemodynamic and neural responses to stimulation. The model provided an excellent fit to the empirical data. The implications of these results for modeling schemes and for physiologic systems coupling neural and hemodynamic activity are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Os defeitos de fechamento de tubo neural constituem uma das malformações mais freqüentes na espécie humana, apresentando alta morbi-mortalidade. Sua etiologia é considerada multifatorial, estando envolvidos fatores genéticos e ambientais. Estes fatores estão relacionados principalmente com o metabolismo da homocisteína. Realizamos um estudo de caso-controle com o objetivo de estudar os fatores bioquímicos e genéticos relacionados ao DTN na nossa população. Em pares de afetados com DTN e suas mães e pares de pacientes normais e suas mães foram avaliados dosagem de folato, vitamina B12, homocisteína e polimorfismos da enzima metileno tetraidrofolato redutase (MTHFR), C677T e A1298C. A dosagem de folato nos casos foi 11,37 ng/mL(±6,72) e nos controles 5,64 ng/mL(±4,16) (p<0,001). O folato sérico das mães foi 7,27 ng/mL (±4,48) e 3,90 ng/mL (±1,77) nas mães controles (p<0,001). A média de dosagem de vitamina B12 foi de 641,88 pg/mL ((±262,21) nos casos e 743,27 pg/mL (±433,52) nos controles (p= 0,205). A média de dosagem de vitamina B12 nas mães dos casos foi 354,75 pg/mL (±142,06) e 465,25 pg/mL (±194,91) nas mães controles (p=0,004). O nível de homocisteína plasmático médio foi 6,89 μmol/L(±4,48) para os casos e 5,41 μmol/L (±2,55) para os controles (p=0,099). Nas mães dos casos a dosagem média de homocisteína foi 7,23 μmol/L (±2,64) e 7,00 μmol/L (±2,24) nas mães controles (p=0,666). Não houve diferença entre a freqüência dos genótipos C677T e A1298C da MTHFR nos casos e controles e suas mães. Para o polimorfismo C677T as freqüências dos alelo C e T foram respectivamente 0,6585 e 0,3414 nos pacientes com DTN; 0,6590 e 0,3410 nos controles; 0,6460 e 0,3540 nas mães dos casos e 0,6136 e 0,3860 nas mães controles. Para o polimorfismo A1298C as freqüências dos alelos A e C foram respectivamente 0,7436 e 0,2564 nos pacientes com DTN; 0,7610 e 0,2390 nos controles; 0,8055 e 0,1945 nas mães dos casos e 0,8065 e 0,1935 nas mães controles. Identificamos que indivíduos homozigotos 677TT apresentam um maior nível de homocisteína e este é inversamente relacionado com os níveis de vitamina B12. Estes achados sugerem que uma alteração metabólica relacionada ao metabolismo da homocisteína e principalmente devido à diminuição da vitamina B12 seja um fator de risco para DTN na nossa população.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schizophrenia has been defined as a neurodevelopmental disease that causes changes in the process of thoughts, perceptions. and emotions, usually leading to a mental deterioration and affective blunting. Studies have shown altered cell respiration and oxidative stress response in schizophrenia; however, most of the knowledge has been acquired from postmortem brain analyses or from nonneural cells. Here we describe that neural cells, derived from induced pluripotent stem cells generated from skin fibroblasts of a schizophrenic patient, presented a twofold increase in extramitochondrial oxygen consumption as well as elevated levels of reactive oxygen species (ROS), when compared to controls. This difference in ROS levels was reverted by the mood stabilizer valproic acid. Our model shows evidence that metabolic changes occurring during neurogenesis are associated with schizophrenia, contributing to a better understanding of the development of the disease and highlighting potential targets for treatment and drug screening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individuals with Down syndrome (DS) carry three copies of the Cystathionine beta-synthase (C beta S) gene. The increase in the dosage of this gene results in an altered profile of metabolites involved in the folate pathway, including reduced homocysteine (Hcy), methionine, S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM). Furthermore, previous studies in individuals with DS have shown that genetic variants in genes involved in the folate pathway influence the concentrations of this metabolism's products. The purpose of this study is to investigate whether polymorphisms in genes involved in folate metabolism affect the plasma concentrations of Hcy and methylmalonic acid (MMA) along with the concentration of serum folate in individuals with DS. Twelve genetic polymorphisms were investigated in 90 individuals with DS (median age 1.29 years, range 0.07-30.35 years; 49 male and 41 female). Genotyping for the polymorphisms was performed either by polymerase chain reaction (PCR) based techniques or by direct sequencing. Plasma concentrations of Hcy and MMA were measured by liquid chromatography-tandem mass spectrometry as previously described, and serum folate was quantified using a competitive immunoassay. Our results indicate that the MTHFR C677T, MTR A2756G, TC2 C776G and BHMT G742A polymorphisms along with MMA concentration are predictors of Hcy concentration. They also show that age and Hcy concentration are predictors of MMA concentration. These findings could help to understand how genetic variation impacts folate metabolism and what metabolic consequences these variants have in individuals with trisomy 21.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intra-arterial (IA) injection represents an experimental avenue for minimally invasive delivery of stem cells to the injured brain. It has however been reported that IA injection of stem cells carries the risk of reduction in cerebral blood flow (CBF) and microstrokes. Here we evaluate the safety of IA neural progenitor cell (NPC) delivery to the brain. Cerebral blood flow of rats was monitored during IA injection of single cell suspensions of NPCs after stroke. Animals received 1 × 10(6) NPCs either injected via a microneedle (microneedle group) into the patent common carotid artery (CCA) or via a catheter into the proximally ligated CCA (catheter group). Controls included saline-only injections and cell injections into non-stroked sham animals. Cerebral blood flow in the microneedle group remained at baseline, whereas in the catheter group a persistent (15 minutes) decrease to 78% of baseline occurred (P<0.001). In non-stroked controls, NPCs injected via the catheter method resulted in higher levels of Iba-1-positive inflammatory cells (P=0.003), higher numbers of degenerating neurons as seen in Fluoro-Jade C staining (P<0.0001) and ischemic changes on diffusion weighted imaging. With an appropriate technique, reduction in CBF and microstrokes do not occur with IA transplantation of NPCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although extensive indirect evidence exists to suggest that the central dopaminergic system plays a significant role in the modulation of arousal, the functional effect of the dopaminergic influence on the regulation of the sleep-wake cycle remains unclear. Thirteen healthy volunteers and 15 unmedicated subjects with a history of major depressive disorder underwent catecholamine depletion (CD) using oral alpha-methyl-para-tyrosine in a randomized, placebo-controlled, double-blind, crossover study. The main outcome measures in both sessions were sleepiness (Stanford-Sleepiness-Scale), cerebral glucose metabolism (positron emission tomography), and serum prolactin concentration. CD consistently induced clinically relevant sleepiness in both groups. The CD-induced prolactin increase significantly correlated with CD-induced sleepiness but not with CD-induced mood and anxiety symptoms. CD-induced sleepiness correlated with CD-induced increases in metabolism in the medial and orbital frontal cortex, bilateral superior temporal cortex, left insula, cingulate motor area and in the vicinity of the periaqueductal gray. This study suggests that the association between dopamine depletion and sleepiness is independent of the brain reward system and the risk for depression. The visceromotor system, the cingulate motor area, the periaqueductal gray and the caudal hypothalamus may mediate the impact of the dopaminergic system on regulation of wakefulness and sleep.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical studies indicate that exaggerated postprandial lipemia is linked to the progression of atherosclerosis, leading cause of Cardiovascular Diseases (CVD). CVD is a multi-factorial disease with complex etiology and according to the literature postprandial Triglycerides (TG) can be used as an independent CVD risk factor. Aim of the current study is to construct an Artificial Neural Network (ANN) based system for the identification of the most important gene-gene and/or gene-environmental interactions that contribute to a fast or slow postprandial metabolism of TG in blood and consequently to investigate the causality of postprandial TG response. The design and development of the system is based on a dataset of 213 subjects who underwent a two meals fatty prandial protocol. For each of the subjects a total of 30 input variables corresponding to genetic variations, sex, age and fasting levels of clinical measurements were known. Those variables provide input to the system, which is based on the combined use of Parameter Decreasing Method (PDM) and an ANN. The system was able to identify the ten (10) most informative variables and achieve a mean accuracy equal to 85.21%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a simulation model of glucose-insulin metabolism for Type 1 diabetes patients is presented. The proposed system is based on the combination of Compartmental Models (CMs) and artificial Neural Networks (NNs). This model aims at the development of an accurate system, in order to assist Type 1 diabetes patients to handle their blood glucose profile and recognize dangerous metabolic states. Data from a Type 1 diabetes patient, stored in a database, have been used as input to the hybrid system. The data contain information about measured blood glucose levels, insulin intake, and description of food intake, along with the corresponding time. The data are passed to three separate CMs, which produce estimations about (i) the effect of Short Acting (SA) insulin intake on blood insulin concentration, (ii) the effect of Intermediate Acting (IA) insulin intake on blood insulin concentration, and (iii) the effect of carbohydrate intake on blood glucose absorption from the gut. The outputs of the three CMs are passed to a Recurrent NN (RNN) in order to predict subsequent blood glucose levels. The RNN is trained with the Real Time Recurrent Learning (RTRL) algorithm. The resulted blood glucose predictions are promising for the use of the proposed model for blood glucose level estimation for Type 1 diabetes patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE: Thyroid hormones and their interactions with catecholamines play a potentially important role in alterations of mood and cognition. OBJECTIVES: This study aimed to examine the neurobiological effects of catecholamine depletion on thyroid hormones by measuring endocrine and cerebral metabolic function in unmedicated subjects with remitted major depressive disorder (RMDD) and in healthy controls. METHODS: This was a randomized, placebo-controlled, and double-blind crossover trial that included 15 unmedicated RMDD subjects and 13 healthy control subjects. The participants underwent two 3-day-long sessions at 1-week intervals; each participant was randomly administered oral α-methyl-para-tyrosine in one session (catecholamine depletion) and an identical capsule containing hydrous lactose (sham depletion) in the other session prior to a [(18)F]-fluorodeoxyglucose positron emission tomography scan. RESULTS: Serum concentrations of free T3 (FT3), free T4 (FT4), and TSH were obtained and assessed with respect to their relationship to regional cerebral glucose metabolism. Both serum FT3 (P = 0.002) and FT4 (P = 0.0009) levels were less suppressed after catecholamine depletion compared with placebo treatment in the entire study sample. There was a positive association between both FT3 (P = 0.0005) and FT4 (P = 0.002) and depressive symptoms measured using the Montgomery-Åsberg Depression Rating Scale. The relative elevation in FT3 level was correlated with a decrease in regional glucose metabolism in the right dorsolateral prefrontal cortex (rDLPFC; P < 0.05, corrected). CONCLUSIONS: This study provided evidence of an association between a thyroid-catecholamine interaction and mood regulation in the rDLPFC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gerbil model of ischemia was used to determine the effect of carotid occlusion on energy metabolites in cellular layers of discrete regions of the hippocampus and dentate gyrus. Levels of glucose, glycogen, ATP and phosphocreatine (PCr) were unchanged after 1 minute of ischemia. However, 3 minutes of ischemia produced a dramatic decrease in net levels of all metabolites. No additional decrease was observed after 15 minutes of ischemia. Re-establishment of the blood flow for 5 minutes after a 15 minute ischemic episode returned all metabolites to pre-ischemia levels. Concentrations of glucose and glycogen were elevated in sham-operated animals as a function of the pentobarbital anesthetic employed. In other studies, elevated GABA levels (produced by inhibiting GABA-transaminase with (gamma)-vinyl-GABA (GVG)) were found to decrease the rate of utilization of the high-energy phosphate metabolites ATP and PCr in the mouse cortex. In addition, glucose and glycogen levels were increased. Thus, tonic inhibition by GABA produced decreased cellular activity. Additional experiments demonstrated the attenuation of ischemia-induced metabolite depletion in cellular layers of regions of the hippocampus, dentate gyrus and cortex after GVG administration. Under ether, 1 minute of bilateral carotid occlusion produced a dramatic decrease in metabolite levels. After GVG treatment, the decrease was blocked completely for glucose, glycogen and ATP, and partially for PCr. Therefore, GABA-transaminase inhibition produced increased levels of GABA which subsequently decreased cellular activity. The protection against ischemia may have been due to (a)decreased metabolic rate; the available energy stores were utilized at a slower rate, and (b)increased levels of energy substrates; additional supplies available to maintain viability. These data suggest that the functional state of neural tissue can determine the response to metabolic stress. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

White matter connects different brain areas and applies electrical insulation to the neuron’s axons with myelin sheaths in order to enable quick signal transmission. Due to its modulatory properties in signal conduction, white matter plays an essential role in learning, cognition and psychiatric disorders (Fields, 2008a). In respect thereof, the non-invasive investigation of white matter anatomy and function in vivo provides the unique opportunity to explore the most complex organ of our body. Thus, the present thesis aimed to apply a multimodal neuroimaging approach to investigate different white matter properties in psychiatric and healthy populations. On the one hand, white matter microstructural properties were investigated in a psychiatric population; on the other hand, white matter metabolic properties were assessed in healthy adults providing basic information about the brain’s wiring entity. As a result, three research papers are presented here. The first paper assessed the microstructural properties of white matter in relation to a frequent epidemiologic finding in schizophrenia. As a result, reduced white matter integrity was observed in patients born in summer and autumn compared to patients born in winter and spring. Despite the large genetic basis of schizophrenia, accumulating evidence indicates that environmental exposures may be implicated in the development of schizophrenia (A. S. Brown, 2011). Notably, epidemiologic studies have shown a 5–8% excess of births during winter and spring for patients with schizophrenia on the Northern Hemisphere at higher latitudes (Torrey, Miller, Rawlings, & Yolken, 1997). Although the underlying mechanisms are unclear, the seasonal birth effect may indicate fluctuating environmental risk factors for schizophrenia. Thus, exposure to harmful factors during foetal development may result in the activation of pathologic neural circuits during adolescence or young adulthood, increasing the risk of schizophrenia (Fatemi & Folsom, 2009). While white matter development starts during the foetal period and continues until adulthood, its major development is accomplished by the age of two years (Brody, Kinney, Kloman, & Gilles, 1987; Huang et al., 2009). This indicates a vulnerability period of white matter that may coincide with the fluctuating environmental risk factors for schizophrenia. Since microstructural alterations of white matter in schizophrenia are frequently observed, the current study provided evidence for the neurodevelopmental hypothesis of schizophrenia. In the second research paper, the perfusion of white matter showed a positive correlation between white matter microstructure and its perfusion with blood across healthy adults. This finding was in line with clinical studies indicating a tight coupling between cerebral perfusion and WM health across subjects (Amann et al., 2012; Chen, Rosas, & Salat, 2013; Kitagawa et al., 2009). Although relatively little is known about the metabolic properties of white matter, different microstructural properties, such as axon diameter and myelination, might be coupled with the metabolic demand of white matter. Furthermore, the ability to detect perfusion signal in white matter was in accordance with a recent study showing that technical improvements, such as pseudo-continuous arterial spin labeling, enabled the reliable detection of white matter perfusion signal (van Osch et al., 2009). The third paper involved a collaboration within the same department to assess the interrelation between functional connectivity networks and their underlying structural connectivity.