964 resultados para Neumann Boundary Conditions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive boundary conditions at a rigid wall for a granular material comprising rough, inelastic particles. Our analysis is confined to the rapid flow, or granular gas, regime in which grains interact by impulsive collisions. We use the Chapman-Enskog expansion in the kinetic theory of dense gases, extended for inelastic and rough particles, to determine the relevant fluxes to the wall. As in previous studies, we assume that the particles are spheres, and that the wall is corrugated by hemispheres rigidly attached to it. Collisions between the particles and the wall hemispheres are characterized by coefficients of restitution and roughness. We derive boundary conditions for the two limiting cases of nearly smooth and nearly perfectly rough spheres, as a hydrodynamic description of granular gases comprising rough spheres is appropriate only in these limits. The results are illustrated by applying the equations of motion and boundary conditions to the problem of plane Couette flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Closed-form analytical expressions are derived for the reflection and transmission coefficients for the problem of scattering of surface water waves by a sharp discontinuity in the surface-boundary-conditions, for the case of deep water. The method involves the use of the Havelock-type expansion of the velocity potential along with an analysis to solve a Carleman-type singular integral equation over a semi-infinite range. This method of solution is an alternative to the Wiener-Hopf technique used previously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the two-parameter Sturm–Liouville system $$ -y_1''+q_1y_1=(\lambda r_{11}+\mu r_{12})y_1\quad\text{on }[0,1], $$ with the boundary conditions $$ \frac{y_1'(0)}{y_1(0)}=\cot\alpha_1\quad\text{and}\quad\frac{y_1'(1)}{y_1(1)}=\frac{a_1\lambda+b_1}{c_1\lambda+d_1}, $$ and $$ -y_2''+q_2y_2=(\lambda r_{21}+\mu r_{22})y_2\quad\text{on }[0,1], $$ with the boundary conditions $$ \frac{y_2'(0)}{y_2(0)} =\cot\alpha_2\quad\text{and}\quad\frac{y_2'(1)}{y_2(1)}=\frac{a_2\mu+b_2}{c_2\mu+d_2}, $$ subject to the uniform-left-definite and uniform-ellipticity conditions; where $q_{i}$ and $r_{ij}$ are continuous real valued functions on $[0,1]$, the angle $\alpha_{i}$ is in $[0,\pi)$ and $a_{i}$, $b_{i}$, $c_{i}$, $d_{i}$ are real numbers with $\delta_{i}=a_{i}d_{i}-b_{i}c_{i}>0$ and $c_{i}\neq0$ for $i,j=1,2$. Results are given on asymptotics, oscillation of eigenfunctions and location of eigenvalues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a system of ordinary differential equations linked by parameters and subject to boundary conditions depending on parameters. We assume certain definiteness conditions on the coefficient functions and on the boundary conditions that yield, in the corresponding abstract setting, a right-definite case. We give results on location of the eigenvalues and oscillation of the eigenfunctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the simulation results from the dynamic analysis of a Shape Memory Alloy (SMA) actuator. The emphasis is on understanding the dynamic behavior under various loading rates and boundary conditions, resulting in complex scenarios such as thermal and stress gradients. Also, due to the polycrystalline nature of SMA wires, presence of microstructural inhomogeneity is inevitable. Probing the effect of inhomogeneity on the dynamic behavior can facilitate the prediction of life and characteristics of SMA wire actuator under varieties of boundary and loading conditions. To study the effect of these factors, an initial boundary value problem of SMA wire is formulated. This is subsequently solved using finite element method. The dynamic response of the SMA wire actuator is analyzed under mechanical loading and results are reported. Effect of loading rate, micro-structural inhomogeneity and thermal boundary conditions on the dynamic response of SMA wire actuator is investigated and the simulation results are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a continuum theory to model low energy excitations of a generic four-band time reversal invariant electronic system with boundaries. We propose a variational energy functional for the wavefunctions which allows us to derive natural boundary conditions valid for such systems. Our formulation is particularly suited for developing a continuum theory of the protected edge/surface excitations of topological insulators both in two and three dimensions. By a detailed comparison of our analytical formulation with tight binding calculations of ribbons of topological insulators modelled by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian, we show that the continuum theory with a natural boundary condition provides an appropriate description of the low energy physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a quadratic C degrees interior penalty method for linear fourth order boundary value problems with essential and natural boundary conditions of the Cahn-Hilliard type. Both a priori and a posteriori error estimates are derived. The performance of the method is illustrated by numerical experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently it has been shown that the fidelity of the ground state of a quantum many-body system can be used todetect its quantum critical points (QCPs). If g denotes the parameter in the Hamiltonian with respect to which the fidelity is computed, we find that for one-dimensional models with large but finite size, the fidelity susceptibility chi(F) can detect a QCP provided that the correlation length exponent satisfies nu < 2. We then show that chi(F) can be used to locate a QCP even if nu >= 2 if we introduce boundary conditions labeled by a twist angle N theta, where N is the system size. If the QCP lies at g = 0, we find that if N is kept constant, chi(F) has a scaling form given by chi(F) similar to theta(-2/nu) f (g/theta(1/nu)) if theta << 2 pi/N. We illustrate this both in a tight-binding model of fermions with a spatially varying chemical potential with amplitude h and period 2q in which nu = q, and in a XY spin-1/2 chain in which nu = 2. Finally we show that when q is very large, the model has two additional QCPs at h = +/- 2 which cannot be detected by studying the energy spectrum but are clearly detected by chi(F). The peak value and width of chi(F) seem to scale as nontrivial powers of q at these QCPs. We argue that these QCPs mark a transition between extended and localized states at the Fermi energy. DOI: 10.1103/PhysRevB.86.245424

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mathematical model for diffuse fluorescence spectroscopy/imaging is represented by coupled partial differential equations (PDEs), which describe the excitation and emission light propagation in soft biological tissues. The generic closed-form solutions for these coupled PDEs are derived in this work for the case of regular geometries using the Green's function approach using both zero and extrapolated boundary conditions. The specific solutions along with the typical data types, such as integrated intensity and the mean time of flight, for various regular geometries were also derived for both time-and frequency-domain cases. (C) 2013 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-equilibrium molecular dynamics (MD) simulations require imposition of non-periodic boundary conditions (NPBCs) that seamlessly account for the effect of the truncated bulk region on the simulated MD region. Standard implementation of specular boundary conditions in such simulations results in spurious density and force fluctuations near the domain boundary and is therefore inappropriate for coupled atomistic-continuum calculations. In this work, we present a novel NPBC model that relies on boundary atoms attached to a simple cubic lattice with soft springs to account for interactions from particles which would have been present in an untruncated full domain treatment. We show that the proposed model suppresses the unphysical fluctuations in the density to less than 1% of the mean while simultaneously eliminating spurious oscillations in both mean and boundary forces. The model allows for an effective coupling of atomistic and continuum solvers as demonstrated through multiscale simulation of boundary driven singular flow in a cavity. The geometric flexibility of the model enables straightforward extension to nonplanar complex domains without any adverse effects on dynamic properties such as the diffusion coefficient. (c) 2015 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When spatial boundaries are inserted, supersymmetry (SUSY) can be broken. We have shown that in an N = 2 supersymmetric theory, all local boundary conditions allowed by self-adjointness of the Hamiltonian break N = 2 SUSY, while only a few of these boundary conditions preserve N = 1 SUSY. We have also shown that for a subset of the boundary conditions compatible with N = 1 SUSY, there exist fermionic ground states which are localized near the boundary. We also show that only very few nonlocal boundary conditions like periodic boundary conditions preserve full N = 2 supersymmetry, but none of them exhibits edge states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the exact controllability of a second order linear evolution equation in a domain with highly oscillating boundary with homogeneous Neumann boundary condition on the oscillating part of boundary. Our aim is to obtain the exact controllability for the homogenized equation. The limit problem with Neumann condition on the oscillating boundary is different and hence we need to study the exact controllability of this new type of problem. In the process of homogenization, we also study the asymptotic analysis of evolution equation in two setups, namely solution by standard weak formulation and solution by transposition method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cracking of ceramics with tetragonal perovskite grain structure is known to appear at different sites and scale level. The multiscale character of damage depends on the combined effects of electromechanical coupling, prevailing physical parameters and boundary conditions. These detail features are exhibited by application of the energy density criterion with judicious use of the mode I asymptotic and full field solution in the range of r/a = 10(-4) to 10(-2) where r and a are, respectively, the distance to the crack tip and half crack length. Very close to the stationary crack tip, bifurcation is predicted resembling the dislocation emission behavior invoked in the molecular dynamics model. At the macroscopic scale, crack growth is predicted to occur straight ahead with two yield zones to the sides. A multiscale feature of crack tip damage is provided for the first time. Numerical values of the relative distances and bifurcation angles are reported for the PZT-4 ceramic subjected to different electric field to applied stress ratio and boundary conditions that consist of the specification of electric field/mechanical stress, electric displacement/mechanical strain, and mixed conditions. To be emphasized is that the multiscale character of damage in piezoceramics does not appear in general. It occurs only for specific combinations of the external and internal field parameters, elastic/piezoelectric/dielectric constants and specified boundary conditions. (C) 2002 Published by Elsevier Science Ltd.