955 resultados para Networks partner techniques
Resumo:
The world of communication has changed quickly in the last decade resulting in the the rapid increase in the pace of peoples’ lives. This is due to the explosion of mobile communication and the internet which has now reached all levels of society. With such pressure for access to communication there is increased demand for bandwidth. Photonic technology is the right solution for high speed networks that have to supply wide bandwidth to new communication service providers. In particular this Ph.D. dissertation deals with DWDM optical packet-switched networks. The issue introduces a huge quantity of problems from physical layer up to transport layer. Here this subject is tackled from the network level perspective. The long term solution represented by optical packet switching has been fully explored in this years together with the Network Research Group at the department of Electronics, Computer Science and System of the University of Bologna. Some national as well as international projects supported this research like the Network of Excellence (NoE) e-Photon/ONe, funded by the European Commission in the Sixth Framework Programme and INTREPIDO project (End-to-end Traffic Engineering and Protection for IP over DWDM Optical Networks) funded by the Italian Ministry of Education, University and Scientific Research. Optical packet switching for DWDM networks is studied at single node level as well as at network level. In particular the techniques discussed are thought to be implemented for a long-haul transport network that connects local and metropolitan networks around the world. The main issues faced are contention resolution in a asynchronous variable packet length environment, adaptive routing, wavelength conversion and node architecture. Characteristics that a network must assure as quality of service and resilience are also explored at both node and network level. Results are mainly evaluated via simulation and through analysis.
Resumo:
Many of developing countries are facing crisis in water management due to increasing of population, water scarcity, water contaminations and effects of world economic crisis. Water distribution systems in developing countries are facing many challenges of efficient repair and rehabilitation since the information of water network is very limited, which makes the rehabilitation assessment plans very difficult. Sufficient information with high technology in developed countries makes the assessment for rehabilitation easy. Developing countries have many difficulties to assess the water network causing system failure, deterioration of mains and bad water quality in the network due to pipe corrosion and deterioration. The limited information brought into focus the urgent need to develop economical assessment for rehabilitation of water distribution systems adapted to water utilities. Gaza Strip is subject to a first case study, suffering from severe shortage in the water supply and environmental problems and contamination of underground water resources. This research focuses on improvement of water supply network to reduce the water losses in water network based on limited database using techniques of ArcGIS and commercial water network software (WaterCAD). A new approach for rehabilitation water pipes has been presented in Gaza city case study. Integrated rehabilitation assessment model has been developed for rehabilitation water pipes including three components; hydraulic assessment model, Physical assessment model and Structural assessment model. WaterCAD model has been developed with integrated in ArcGIS to produce the hydraulic assessment model for water network. The model have been designed based on pipe condition assessment with 100 score points as a maximum points for pipe condition. As results from this model, we can indicate that 40% of water pipeline have score points less than 50 points and about 10% of total pipes length have less than 30 score points. By using this model, the rehabilitation plans for each region in Gaza city can be achieved based on available budget and condition of pipes. The second case study is Kuala Lumpur Case from semi-developed countries, which has been used to develop an approach to improve the water network under crucial conditions using, advanced statistical and GIS techniques. Kuala Lumpur (KL) has water losses about 40% and high failure rate, which make severe problem. This case can represent cases in South Asia countries. Kuala Lumpur faced big challenges to reduce the water losses in water network during last 5 years. One of these challenges is high deterioration of asbestos cement (AC) pipes. They need to replace more than 6500 km of AC pipes, which need a huge budget to be achieved. Asbestos cement is subject to deterioration due to various chemical processes that either leach out the cement material or penetrate the concrete to form products that weaken the cement matrix. This case presents an approach for geo-statistical model for modelling pipe failures in a water distribution network. Database of Syabas Company (Kuala Lumpur water company) has been used in developing the model. The statistical models have been calibrated, verified and used to predict failures for both networks and individual pipes. The mathematical formulation developed for failure frequency in Kuala Lumpur was based on different pipeline characteristics, reflecting several factors such as pipe diameter, length, pressure and failure history. Generalized linear model have been applied to predict pipe failures based on District Meter Zone (DMZ) and individual pipe levels. Based on Kuala Lumpur case study, several outputs and implications have been achieved. Correlations between spatial and temporal intervals of pipe failures also have been done using ArcGIS software. Water Pipe Assessment Model (WPAM) has been developed using the analysis of historical pipe failure in Kuala Lumpur which prioritizing the pipe rehabilitation candidates based on ranking system. Frankfurt Water Network in Germany is the third main case study. This case makes an overview for Survival analysis and neural network methods used in water network. Rehabilitation strategies of water pipes have been developed for Frankfurt water network in cooperation with Mainova (Frankfurt Water Company). This thesis also presents a methodology of technical condition assessment of plastic pipes based on simple analysis. This thesis aims to make contribution to improve the prediction of pipe failures in water networks using Geographic Information System (GIS) and Decision Support System (DSS). The output from the technical condition assessment model can be used to estimate future budget needs for rehabilitation and to define pipes with high priority for replacement based on poor condition. rn
Resumo:
Target localization has a wide range of military and civilian applications in wireless mobile networks. Examples include battle-field surveillance, emergency 911 (E911), traffc alert, habitat monitoring, resource allocation, routing, and disaster mitigation. Basic localization techniques include time-of-arrival (TOA), direction-of-arrival (DOA) and received-signal strength (RSS) estimation. Techniques that are proposed based on TOA and DOA are very sensitive to the availability of Line-of-sight (LOS) which is the direct path between the transmitter and the receiver. If LOS is not available, TOA and DOA estimation errors create a large localization error. In order to reduce NLOS localization error, NLOS identifcation, mitigation, and localization techniques have been proposed. This research investigates NLOS identifcation for multiple antennas radio systems. The techniques proposed in the literature mainly use one antenna element to enable NLOS identifcation. When a single antenna is utilized, limited features of the wireless channel can be exploited to identify NLOS situations. However, in DOA-based wireless localization systems, multiple antenna elements are available. In addition, multiple antenna technology has been adopted in many widely used wireless systems such as wireless LAN 802.11n and WiMAX 802.16e which are good candidates for localization based services. In this work, the potential of spatial channel information for high performance NLOS identifcation is investigated. Considering narrowband multiple antenna wireless systems, two xvNLOS identifcation techniques are proposed. Here, the implementation of spatial correlation of channel coeffcients across antenna elements as a metric for NLOS identifcation is proposed. In order to obtain the spatial correlation, a new multi-input multi-output (MIMO) channel model based on rough surface theory is proposed. This model can be used to compute the spatial correlation between the antenna pair separated by any distance. In addition, a new NLOS identifcation technique that exploits the statistics of phase difference across two antenna elements is proposed. This technique assumes the phases received across two antenna elements are uncorrelated. This assumption is validated based on the well-known circular and elliptic scattering models. Next, it is proved that the channel Rician K-factor is a function of the phase difference variance. Exploiting Rician K-factor, techniques to identify NLOS scenarios are proposed. Considering wideband multiple antenna wireless systems which use MIMO-orthogonal frequency division multiplexing (OFDM) signaling, space-time-frequency channel correlation is exploited to attain NLOS identifcation in time-varying, frequency-selective and spaceselective radio channels. Novel NLOS identi?cation measures based on space, time and frequency channel correlation are proposed and their performances are evaluated. These measures represent a better NLOS identifcation performance compared to those that only use space, time or frequency.
Resumo:
Si una red inalámbrica de sensores se implementa en un entorno hostil, las limitaciones intrínsecas a los nodos conllevan muchos problemas de seguridad. En este artículo se aborda un ataque particular a los protocolos de localización y descubrimiento de vecinos, llevada a cabo por dos nodos que actúan en connivencia y establecen un "agujero de gusano" para tratar de engañar a un nodo aislado, haciéndole creer que se encuentra en la vecindad de un conjunto de nodos locales. Para contrarrestar este tipo de amenazas, se presenta un marco de actuación genéricamente denominado "detection of wormhole attacks using range-free methods" (DWARF) dentro del cual derivamos dos estrategias para de detección de agujeros de gusano: el primer enfoque (DWARFLoc) realiza conjuntamente la localización y la detección de ataques, mientras que el otro (DWARFTest) valida la posición estimada por el nodo una vez finalizado el protocolo de localización. Las simulaciones muestran que ambas estrategias son eficaces en la detección de ataques tipo "agujero de gusano", y sus prestaciones se comparan con las de un test convencional basado en la razón de verosimilitudes.
Resumo:
Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.
Resumo:
Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.
Resumo:
En los últimos años la sociedad está experimentando una serie de cambios. Uno de estos cambios es la datificación (“datafication” en inglés). Este término puede ser definido como la transformación sistemática de aspectos de la vida cotidiana de las personas en datos procesados por ordenadores. Cada día, a cada minuto y a cada segundo, cada vez que alguien emplea un dispositivo digital,hay datos siendo guardados en algún lugar. Se puede tratar del contenido de un correo electrónico pero también puede ser el número de pasos que esa persona ha caminado o su historial médico. El simple almacenamiento de datos no proporciona un valor añadido por si solo. Para extraer conocimiento de los datos, y por tanto darles un valor, se requiere del análisis de datos. La ciencia de los datos junto con el análisis de datos se está volviendo cada vez más popular. Hoy en día, se pueden encontrar millones de web APIs estadísticas; estas APIs ofrecen la posibilidad de analizar tendencias o sentimientos presentes en las redes sociales o en internet en general. Una de las redes sociales más populares, Twitter, es pública. Cada mensaje, o tweet, publicado puede ser visto por cualquier persona en el mundo, siempre y cuando posea una conexión a internet. Esto hace de Twitter un medio interesante a la hora de analizar hábitos sociales o perfiles de consumo. Es en este contexto en que se engloba este proyecto. Este trabajo, combinando el análisis estadístico de datos y el análisis de contenido, trata de extraer conocimiento de tweets públicos de Twitter. En particular tratará de establecer si el género es un factor influyente en las relaciones entre usuarios de Twitter. Para ello, se analizará una base de datos que contiene casi 2.000 tweets. En primer lugar se determinará el género de los usuarios mediante web APIs. En segundo lugar se empleará el contraste de hipótesis para saber si el género influye en los usuarios a la hora de relacionarse con otros usuarios. Finalmente se construirá un modelo estadístico para predecir el comportamiento de los usuarios de Twitter en relación a su género.
Resumo:
Energy consumption in wireless networks, and in particular in cellular mobile networks, is now of major concern in respect of their potential adverse impact upon the environment and their escalating operating energy costs. The recent phenomenal growth of data services in cellular mobile networks has exacerbated the energy consumption issue and is forcing researchers to address how to design future wireless networks that take into account energy consumption constraints. One fundamental approach to reduce energy consumption of wireless networks is to adopt new radio access architectures and radio techniques. The Mobile VCE (MVCE) Green Radio project, established in 2009, is considering such new architectural and technical approaches. This paper reports highlights the key research issues pursued in the MVCE Green Radio project.
Resumo:
This paper presents an analysis of different techniques that is designed to aid a researcher in determining which of the classification techniques would be most appropriate to choose the ridge, robust and linear regression methods for predicting outcomes for specific quasi-stationary process.
Resumo:
The Internet has become an integral part of our nation’s critical socio-economic infrastructure. With its heightened use and growing complexity however, organizations are at greater risk of cyber crimes. To aid in the investigation of crimes committed on or via the Internet, a network forensics analysis tool pulls together needed digital evidence. It provides a platform for performing deep network analysis by capturing, recording and analyzing network events to find out the source of a security attack or other information security incidents. Existing network forensics work has been mostly focused on the Internet and fixed networks. But the exponential growth and use of wireless technologies, coupled with their unprecedented characteristics, necessitates the development of new network forensic analysis tools. This dissertation fostered the emergence of a new research field in cellular and ad-hoc network forensics. It was one of the first works to identify this problem and offer fundamental techniques and tools that laid the groundwork for future research. In particular, it introduced novel methods to record network incidents and report logged incidents. For recording incidents, location is considered essential to documenting network incidents. However, in network topology spaces, location cannot be measured due to absence of a ‘distance metric’. Therefore, a novel solution was proposed to label locations of nodes within network topology spaces, and then to authenticate the identity of nodes in ad hoc environments. For reporting logged incidents, a novel technique based on Distributed Hash Tables (DHT) was adopted. Although the direct use of DHTs for reporting logged incidents would result in an uncontrollably recursive traffic, a new mechanism was introduced that overcome this recursive process. These logging and reporting techniques aided forensics over cellular and ad-hoc networks, which in turn increased their ability to track and trace attacks to their source. These techniques were a starting point for further research and development that would result in equipping future ad hoc networks with forensic components to complement existing security mechanisms.
Resumo:
The Internet has become an integral part of our nation's critical socio-economic infrastructure. With its heightened use and growing complexity however, organizations are at greater risk of cyber crimes. To aid in the investigation of crimes committed on or via the Internet, a network forensics analysis tool pulls together needed digital evidence. It provides a platform for performing deep network analysis by capturing, recording and analyzing network events to find out the source of a security attack or other information security incidents. Existing network forensics work has been mostly focused on the Internet and fixed networks. But the exponential growth and use of wireless technologies, coupled with their unprecedented characteristics, necessitates the development of new network forensic analysis tools. This dissertation fostered the emergence of a new research field in cellular and ad-hoc network forensics. It was one of the first works to identify this problem and offer fundamental techniques and tools that laid the groundwork for future research. In particular, it introduced novel methods to record network incidents and report logged incidents. For recording incidents, location is considered essential to documenting network incidents. However, in network topology spaces, location cannot be measured due to absence of a 'distance metric'. Therefore, a novel solution was proposed to label locations of nodes within network topology spaces, and then to authenticate the identity of nodes in ad hoc environments. For reporting logged incidents, a novel technique based on Distributed Hash Tables (DHT) was adopted. Although the direct use of DHTs for reporting logged incidents would result in an uncontrollably recursive traffic, a new mechanism was introduced that overcome this recursive process. These logging and reporting techniques aided forensics over cellular and ad-hoc networks, which in turn increased their ability to track and trace attacks to their source. These techniques were a starting point for further research and development that would result in equipping future ad hoc networks with forensic components to complement existing security mechanisms.
Resumo:
This paper outlines the development of a crosscorrelation algorithm and a spiking neural network (SNN) for sound localisation based on real sound recorded in a noisy and dynamic environment by a mobile robot. The SNN architecture aims to simulate the sound localisation ability of the mammalian auditory pathways by exploiting the binaural cue of interaural time difference (ITD). The medial superior olive was the inspiration for the SNN architecture which required the integration of an encoding layer which produced biologically realistic spike trains, a model of the bushy cells found in the cochlear nucleus and a supervised learning algorithm. The experimental results demonstrate that biologically inspired sound localisation achieved using a SNN can compare favourably to the more classical technique of cross-correlation.
Resumo:
In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.