1000 resultados para Network Libraries


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of indexing language in university libraries collective catalogs and the socio-cognitive context of indexing and users were evaluated. The methodology consisted of a diagnostic study elaboration of the functioning and treatment procedures of the indexing information from nine libraries of the UNESP Network, representing the Civil Engineering, Pedagogy and Dentistry areas from a data collection using the Verbal Protocol introspective technique in the Individual and Group forms. The study conducted a reflection upon the statements issued by the seventy-two participating individuals whose the results revealed unsatisfactory results about the use of the Subject Headings List of the BIBLIODATA Network, indexing language utilizing by the UNESP Libraries Network, Brazil, in the representation and in the information retrieval process in the ATHENA catalog, about the sequent aspects of the language: lack of specialized vocabulary as well as updated; lack of remissives and of specific headings, and others. We have concluded that the adequate use of indexing languages of specialized scientific areas becomes by means of evaluation as to updating, specificity and compatibility in order to meet the needs of indexing and information retrieval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Primary access libraries serve as the foundation of the National Network of Libraries of Medicine (NN/LM) interlibrary loan (ILL) hierarchy, yet few published reports directly address the important role these libraries play in the ILL system. This may reflect the traditional view that small, primary access libraries are largely users of ILL, rather than important contributors to the effectiveness and efficiency of the national ILL system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of the distributed information measurement and control system for optical spectral research of particle beam and plasma objects and the execution of laboratory works on Physics and Engineering Department of Petrozavodsk State University are described. At the hardware level the system is represented by a complex of the automated workplaces joined into computer network. The key element of the system is the communication server, which supports the multi-user mode and distributes resources among clients, monitors the system and provides secure access. Other system components are formed by equipment servers (CC and GPIB servers, a server for the access to microcontrollers MCS-196 and others) and the client programs that carry out data acquisition, accumulation and processing and management of the course of the experiment as well. In this work the designed by the authors network interface is discussed. The interface provides the connection of measuring and executive devices to the distributed information measurement and control system via Ethernet. This interface allows controlling of experimental parameters by use of digital devices, monitoring of experiment parameters by polling of analog and digital sensors. The device firmware is written in assembler language and includes libraries for Ethernet-, IP-, TCP- UDP-packets forming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research trends in computer-aided drug design have shown an increasing interest towards the implementation of advanced approaches able to deal with large amount of data. This demand arose from the awareness of the complexity of biological systems and from the availability of data provided by high-throughput technologies. As a consequence, drug research has embraced this paradigm shift exploiting approaches such as that based on networks. Indeed, the process of drug discovery can benefit from the implementation of network-based methods at different steps from target identification to drug repurposing. From this broad range of opportunities, this thesis is focused on three main topics: (i) chemical space networks (CSNs), which are designed to represent and characterize bioactive compound data sets; (ii) drug-target interactions (DTIs) prediction through a network-based algorithm that predicts missing links; (iii) COVID-19 drug research which was explored implementing COVIDrugNet, a network-based tool for COVID-19 related drugs. The main highlight emerged from this thesis is that network-based approaches can be considered useful methodologies to tackle different issues in drug research. In detail, CSNs are valuable coordinate-free, graphically accessible representations of structure-activity relationships of bioactive compounds data sets especially for medium-large libraries of molecules. DTIs prediction through the random walk with restart algorithm on heterogeneous networks can be a helpful method for target identification. COVIDrugNet is an example of the usefulness of network-based approaches for studying drugs related to a specific condition, i.e., COVID-19, and the same systems-based approaches can be used for other diseases. To conclude, network-based tools are proving to be suitable in many applications in drug research and provide the opportunity to model and analyze diverse drug-related data sets, even large ones, also integrating different multi-domain information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first topic analyzed in the thesis will be Neural Architecture Search (NAS). I will focus on two different tools that I developed, one to optimize the architecture of Temporal Convolutional Networks (TCNs), a convolutional model for time-series processing that has recently emerged, and one to optimize the data precision of tensors inside CNNs. The first NAS proposed explicitly targets the optimization of the most peculiar architectural parameters of TCNs, namely dilation, receptive field, and the number of features in each layer. Note that this is the first NAS that explicitly targets these networks. The second NAS proposed instead focuses on finding the most efficient data format for a target CNN, with the granularity of the layer filter. Note that applying these two NASes in sequence allows an "application designer" to minimize the structure of the neural network employed, minimizing the number of operations or the memory usage of the network. After that, the second topic described is the optimization of neural network deployment on edge devices. Importantly, exploiting edge platforms' scarce resources is critical for NN efficient execution on MCUs. To do so, I will introduce DORY (Deployment Oriented to memoRY) -- an automatic tool to deploy CNNs on low-cost MCUs. DORY, in different steps, can manage different levels of memory inside the MCU automatically, offload the computation workload (i.e., the different layers of a neural network) to dedicated hardware accelerators, and automatically generates ANSI C code that orchestrates off- and on-chip transfers with the computation phases. On top of this, I will introduce two optimized computation libraries that DORY can exploit to deploy TCNs and Transformers on edge efficiently. I conclude the thesis with two different applications on bio-signal analysis, i.e., heart rate tracking and sEMG-based gesture recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimers disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article seeks to investigate patterns of performance and relationships between grip strength, gait speed and self-rated health, and investigate the relationships between them, considering the variables of gender, age and family income. This was conducted in a probabilistic sample of community-dwelling elderly aged 65 and over, members of a population study on frailty. A total of 689 elderly people without cognitive deficit suggestive of dementia underwent tests of gait speed and grip strength. Comparisons between groups were based on low, medium and high speed and strength. Self-related health was assessed using a 5-point scale. The males and the younger elderly individuals scored significantly higher on grip strength and gait speed than the female and oldest did; the richest scored higher than the poorest on grip strength and gait speed; females and men aged over 80 had weaker grip strength and lower gait speed; slow gait speed and low income arose as risk factors for a worse health evaluation. Lower muscular strength affects the self-rated assessment of health because it results in a reduction in functional capacity, especially in the presence of poverty and a lack of compensatory factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The search for an Alzheimer's disease (AD) biomarker is one of the most relevant contemporary research topics due to the high prevalence and social costs of the disease. Functional connectivity (FC) of the default mode network (DMN) is a plausible candidate for such a biomarker. We evaluated 22 patients with mild AD and 26 age- and gender-matched healthy controls. All subjects underwent resting functional magnetic resonance imaging (fMRI) in a 3.0 T scanner. To identify the DMN, seed-based FC of the posterior cingulate was calculated. We also measured the sensitivity/specificity of the method, and verified a correlation with cognitive performance. We found a significant difference between patients with mild AD and controls in average z-scores: DMN, whole cortical positive (WCP) and absolute values. DMN individual values showed a sensitivity of 77.3% and specificity of 70%. DMN and WCP values were correlated to global cognition and episodic memory performance. We showed that individual measures of DMN connectivity could be considered a promising method to differentiate AD, even at an early phase, from normal aging. Further studies with larger numbers of participants, as well as validation of normal values, are needed for more definitive conclusions.