992 resultados para Neotropical biting midges
Resumo:
A new species of Culicoides of the subgenus Diphaomyia, Culicoides jurbergi Felippe-Bauer, is described and illustrated based on female specimens collected biting man and with light traps in Peruvian Amazonia. The species is compared with its similar congener mirsae Ortiz.
Resumo:
Notes are presented on the three known Neotropical species of the Culicoides stigmalis group of boodsucking midges: alvarezi Ortiz, fluviatilis (Lutz), stigmalis Wirth, and on deanei n.sp., which is described from the state of Rio de Janeiro, Brazil. A diagnosis is given for the group, as well as a key for identification and comparative phtographs of the female wings.
Resumo:
We studied by sanning electron microscopy the number, types, structure and distribution of the antennal sensilla of the medical important ceratopogonid Culicoides paraensis (Goeldi). There are about 174 sense organs on the antenmal flagellum which are classified as sensilla chaetica; sharp-tipped and blunt-tipped (type I and II) sensilla trichodea; sensilla basiconica; sensilla coeloconica; sensilla ampullacea and styloconic-type sensilla. The role of antennal sensory organs are discussed regarding the host preference of the biting midges.
Resumo:
Two new species of the Culicoides paraensis species group, C. diversus Felippe-Bauer and C. peruvianus Felippe-Bauer, are described and illustrated based on female specimens from Amazonian region of Peru. A systematic key, table with numerical characters of females, and distribution of species of the C. paraensis group are given.
Resumo:
The following three species of Ceratopogonidae were collected breeding in the rhizomatous herb Phenakospermum guyannense Endl., 1833 in the vicinity of Manaus, Brazil, a new species, Culicoides (Mataemyia) felippebauerae Spinelli, Forcipomyia (Forcipomyia) genualis (Loew), and F. (Phytohelea) musae Clastrier & Dellécole. C. (M.) felippebauerae is described and illustrated as adult, pupa, and fourth instar larva, the adult compared with the adult of C. barthi Taveres and Souza and larva and pupa with those of C. dicrourus Wirth & Blanton and C. macieli Tavares & Ruiz, the only species with known immatures in the subgenus. The pupa and fourth instar larva of F. (P.) musae are described and illustrated and compared with immatures of F. (P.) edwardsi Saunders.
Resumo:
A new species of the Culicoides hylas species group, Culicoides pseudoheliconiae Felippe-Bauer is described and illustrated based on female specimens from Peruvian Amazon, and Culicoides contubernalis Ortiz & Leon from Ecuador is resurrected and redescribed as a valid species. A systematic key, table with numerical characters of females of species of the Culicoides hylas group are given.
Resumo:
A new species of the Culicoides (Hoffmania) hylas species group, Culicoides baniwa Felippe-Bauer is described and illustrated based on a female specimen from the state of Amazonas, Brazil. A systematic key, wing photographs, diagramme of the legs pattern, table with numerical characters of females and a synopsis of the 11 species of the C. hylas group are presented. This paper further presents a new record of Culicoides pseudoheliconiae Felippe-Bauer out of the previously defined geographic distribution of the hylas species group, in the province of Misiones, Argentina.
Resumo:
A new species of the Culicoides reticulatus species group, Culicoides kuripako Felippe-Bauer, is described and illustrated based on females and male specimens from the states of Amazonas and Pará, Brazil. The new species is compared with its similar sympatric congener, Culicoides paucienfuscatus Barbosa.
Resumo:
Black fly (Simuliidae) silk is produced by the larvae and pharate pupae and is used for anchorage and cocoon production. There exists limited information on simuliid silks, including protein composition and genetic sequences encoding such proteins. The present study aimed to expand what is known about simuliid silks by examining the silks of several simuliid species and by making comparisons to the silk of non-biting midges (Chironomidae). Silk glands were dissected out of larval and pupal simuliids, and protein contents were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and visualized with silver stain. Protein contents were compared by mass in kilodaltons (kDa) between life stages and among species. Polymerase chain reaction (PCR) was used to expand upon known gene sequence information, and to determine the presence of genes homologous to chironomid silk. SDS-PAGE of cocoons revealed the presence of a 56 kDa and a 67 kDa protein. Silk gland contained as many as 28 different proteins ranging from 319 kDa to 8 kDa. Protein profiles vary among species, and group into large (>200), intermediate(>100), and small (<100) protein classes as is found in chironomids. It is likely that silk evolved in a common ancestor of simuliids and chironomids
Resumo:
[EN] Background: Culicoides (Diptera: Ceratopogonidae) biting midges are vectors for a diversity of pathogens including bluetongue virus (BTV) that generate important economic losses. BTV has expanded its range in recent decades, probably due to the expansion of its main vector and the presence of other autochthonous competent vectors. Although the Canary Islands are still free of bluetongue disease (BTD), Spain and Europe have had to face up to a spread of bluetongue with disastrous consequences. Therefore, it is essential to identify the distribution of biting midges and understand their feeding patterns in areas susceptible to BTD. To that end, we captured biting midges on two farms in the Canary Islands (i) to identify the midge species in question and characterize their COI barcoding region and (ii) to ascertain the source of their bloodmeals using molecular tools.Methods: Biting midges were captured using CDC traps baited with a 4-W blacklight (UV) bulb on Gran Canaria and on Tenerife. Biting midges were quantified and identified according to their wing patterns. A 688 bp segment of the mitochondrial COI gene of 20 biting midges (11 from Gran Canaria and 9 from Tenerife) were PCR amplified using the primers LCO1490 and HCO2198. Moreover, after selected all available females showing any rest of blood in their abdomen, a nested-PCR approach was used to amplify a fragment of the COI gene from vertebrate DNA contained in bloodmeals. The origin of bloodmeals was identified by comparison with the nucleotide-nucleotide basic alignment search tool (BLAST). Results: The morphological identification of 491 female biting midges revealed the presence of a single morphospecies belonging to the Obsoletus group. When sequencing the barcoding region of the 20 females used to check genetic variability, we identified two haplotypes differing in a single base. Comparison analysis using the nucleotide-nucleotide basic alignment search tool (BLAST) showed that both haplotypes belong to Culicoides obsoletus, a potential BTV vector. As well, using molecular tools we identified the feeding sources of 136 biting midges and were able to confirm that C. obsoletus females feed on goats and sheep on both islands.Conclusions: These results confirm that the feeding pattern of C. obsoletus is a potentially important factor in BTV transmission to susceptible hosts in case of introduction into the archipelago. Consequently, in the Canary Islands it is essential to maintain vigilance of Culicoides-transmitted viruses such as BTV and the novel Schmallenberg virus.
Resumo:
Fossils of chironomid larvae (non-biting midges) preserved in lake sediments are well-established palaeotemperature indicators which, with the aid of numerical chironomid-based inference models (transfer functions), can provide quantitative estimates of past temperature change. This approach to temperature reconstruction relies on the strong relationship between air and lake surface water temperature and the distribution of individual chironomid taxa (species, species groups, genera) that has been observed in different climate regions (arctic, subarctic, temperate and tropical) in both the Northern and Southern hemisphere. A major complicating factor for the use of chironomids for palaeoclimate reconstruction which increases the uncertainty associated with chironomid-based temperature estimates is that the exact nature of the mechanism responsible for the strong relationship between temperature and chironomid assemblages in lakes remains uncertain. While a number of authors have provided state of the art overviews of fossil chironomid palaeoecology and the use of chironomids for temperature reconstruction, few have focused on examining the ecological basis for this approach. Here, we review the nature of the relationship between chironomids and temperature based on the available ecological evidence. After discussing many of the surveys describing the distribution of chironomid taxa in lake surface sediments in relation to temperature, we also examine evidence from laboratory and field studies exploring the effects of temperature on chironomid physiology, life cycles and behaviour. We show that, even though a direct influence of water temperature on chironomid development, growth and survival is well described, chironomid palaeoclimatology is presently faced with the paradoxical situation that the relationship between chironomid distribution and temperature seems strongest in relatively deep, thermally stratified lakes in temperate and subarctic regions in which the benthic chironomid fauna lives largely decoupled from the direct influence of air and surface water temperature. This finding suggests that indirect effects of temperature on physical and chemical characteristics of lakes play an important role in determining the distribution of lake-living chironomid larvae. However, we also demonstrate that no single indirect mechanism has been identified that can explain the strong relationship between chironomid distribution and temperature in all regions and datasets presently available. This observation contrasts with the previously published hypothesis that climatic effects on lake nutrient status and productivity may be largely responsible for the apparent correlation between chironomid assemblage distribution and temperature. We conclude our review by summarizing the implications of our findings for chironomid-based palaeoclimatology and by pointing towards further avenues of research necessary to improve our mechanistic understanding of the chironomid-temperature relationship.
Resumo:
Insect bite hypersensitivity (IBH) in horses represents an immunoglobulin E (IgE)-mediated hypersensitivity to salivary antigens from biting midges (Culicoides spp.). The aim of this study was to evaluate and compare the performances of IgE ELISAs using recombinant Culicoides spp. Obsoletus group salivary gland antigens or crude whole body extracts ('ObsWBE'), C. nubeculosus recombinant proteins (Culn1, 3, 4, 5, 7, 8 and 10) and Obsoletus group recombinant proteins (Culo1 and 2). IgE levels were measured in plasma of 343 Warmblood horses classified as IBH-affected (n=167) and IBH-unaffected (n=176) according to the owners' descriptions. IBH-affected horses were subdivided based on the severity of their clinical signs at sampling and whether or not their IBH history was considered to be classical. The accuracies of the tests increased when clinical signs at sampling were more pronounced or when the IBH history could be considered as classical. A combination of IgE levels against the three best performing Culicoides spp. recombinant proteins (Culn4, Culo1 and Culo2) and ObsWBE resulted in the best performing test. When IBH-affected horses showing a classical history of the disease and severe clinical signs were compared with IBH-unaffected horses, the Youden's index at the optimal cut-off for the three tests in combination was 0.67. This optimal cut-off had a sensitivity of 70%, a specificity of 97% and a total accuracy of 92%. The performance of the IgE ELISA was affected by the severity of IBH clinical signs at sampling and was improved when IgE levels against several recombinant proteins were combined.
Resumo:
Infections with Schmallenberg virus (SBV), a novel Orthobunyavirus transmitted by biting midges, can cause abortions and malformations of newborns and severe symptoms in adults of domestic and wild ruminants. Understanding the temporal and spatial distribution of the virus in a certain territory is important for the control and prevention of the disease. In this study, seroprevalence of antibodies against SBV and the spatial spread of the virus was investigated in Swiss dairy cattle applying a milk serology technique on bulk milk samples. The seroprevalence in cattle herds was significantly higher in December 2012 (99.5%) compared to July 2012 (19.7%). This high between-herd seroprevalence in cattle herds was observed shortly after the first detection of viral infections. Milk samples originating from farms with seropositive animals taken in December 2012 (n=209; mean 160%) revealed significantly higher S/P% ratios than samples collected in July 2012 (n=48; mean 103.6%). This finding suggests a high within-herd seroprevalence in infected herds which makes testing of bulk tank milk samples for the identification farms with past exposures to SBV a sensitive method. It suggests also that within-herd transmission followed by seroconversion still occurred between July and December. In July 2012, positive bulk tank milk samples were mainly restricted to the western part of Switzerland whereas in December 2012, all samples except one were positive. A spatial analysis revealed a separation of regions with and without positive farms in July 2012 and no spatial clustering within the regions with positive farms. In contrast to the spatial dispersion of bluetongue virus, a virus that is also transmitted by Culicoides midges, in 2008 in Switzerland, the spread of SBV occurred from the western to the eastern part of the country. The dispersed incursion of SBV took place in the western part of Switzerland and the virus spread rapidly to the remaining territory. This spatial pattern is consistent with the hypothesis that transmission by Culicoides midges was the main way of spreading.
Resumo:
Schmallenberg virus (SBV) is a novel Orthobunyavirus causing mild clinical signs in cows and malformations in aborted and neonatal ruminants in Europe. SBV belongs to the family Bunyaviridae and is transmitted by biting midges. This new virus was identified for the first time in blood samples of cows in the city of Schmallenberg in North-Rhine Westphalia in November 2011. Since then, the virus spread to several European countries. Here, we describe the pathogenesis and the risk of viral spread in the Portuguese territory.
Resumo:
Schmallenberg virus (SBV) is a novel Orthobunyavirus causing mild clinical signs in cows and malformations in aborted and neonatal ruminants in Europe. SBV belongs to the family Bunyaviridae and is transmitted by biting midges. This new virus was identified for the first time in the blood samples of cows in the city of Schmallenberg in NorthRhine-Westphalia in November 2011. Since then the virus spread to several European countries. Here we describe the origin and emergence, as well as the transmission and the differential diagnosis of this virus, now known to be a serious threat to Veterinary Public Health.