934 resultados para Neoplasms, Multiple Primary
Resumo:
This is a review on second primary tumors in patients with head and neck cancer. These patients have a high risk of developing other cancers simultaneously or subsequently. The incidence of multiple primary tumors in this population can be as high as 27%. Recurrences are the most common cause of treatment failure within the first 2 years of follow-up. After the third year the diagnosis of a second primary tumor becomes the most important cause of morbimortality in head and neck cancer patients, especially in those treated for cancers early diagnosed. Most second primary tumors occur in the upper aerodigestive tract (40%-59%), lung (31%-37.5%), and esophagus (9%-44%). Patients who develop second primary tumor have a significant reduction of survival expectancy.
Resumo:
Primary cutaneous B-cell lymphomas are a heterogeneous group of mature B-cells neoplasms with tropism for the skin, whose biology and clinical course differ significantly from the equivalent nodal lymphomas. The most indolent forms comprise the primary cutaneous marginal zone and follicle center B-cell lymphomas that despite the excellent prognosis have cutaneous recurrences very commonly. The most aggressive forms include the primary cutaneous large B-cell lymphomas, consisting in two major groups: the leg type, with poor prognosis, and others, the latter representing a heterogeneous group of lymphomas from which specific entities are supposed to be individualized over time, such as intravascular large B-cell lymphomas. Treatment may include surgical excision, radiotherapy, antibiotics, corticosteroids, interferon, monoclonal antibodies and chemotherapy, depending on the type of lymphoma and on the type and location of the skin lesions. In subtypes with good prognosis is contraindicated overtreatment and in those associated with a worse prognosis the recommended therapy relies on CHOP-like regimens associated with rituximab, assisted or not with local radiotherapy. We review the primary cutaneous B-cell lymphomas, remembering the diagnostic criteria, differential diagnosis, classification, and prognostic factors and presenting the available therapies.
Resumo:
This thesis developed semi-parametric regression models for estimating the spatio-temporal distribution of outdoor airborne ultrafine particle number concentration (PNC). The models developed incorporate multivariate penalised splines and random walks and autoregressive errors in order to estimate non-linear functions of space, time and other covariates. The models were applied to data from the "Ultrafine Particles from Traffic Emissions and Child" project in Brisbane, Australia, and to longitudinal measurements of air quality in Helsinki, Finland. The spline and random walk aspects of the models reveal how the daily trend in PNC changes over the year in Helsinki and the similarities and differences in the daily and weekly trends across multiple primary schools in Brisbane. Midday peaks in PNC in Brisbane locations are attributed to new particle formation events at the Port of Brisbane and Brisbane Airport.
Resumo:
Basal cell carcinoma (BCC) is a skin cancer of particular importance to the Australian community. Its rate of occurrence is highest in Queensland, where 1% to 2% of people are newly affected annually. This is an order of magnitude higher than corresponding incidence estimates in European and North American populations. Individuals with a sun-sensitive complexion are particularly susceptible because sun exposure is the single most important causative agent, as shown by the anatomic distribution of BCC which is in general consistent with the levels of sun exposure across body sites. A distinguishing feature of BCC is the occurrence of multiple primary tumours within individuals, synchronously or over time, and their diagnosis and treatment costs contribute substantially to the major public health burden caused by BCC. A primary knowledge gap about BCC pathogenesis however was an understanding of the true frequency of multiple BCC occurrences and their body distribution, and why a proportion of people do develop more than one BCC in their life. This research project sought to address this gap under an overarching research aim to better understand the detailed epidemiology of BCC with the ultimate goal of reducing the burden of this skin cancer through prevention. The particular aim was to document prospectively the rate of BCC occurrence and its associations with constitutional and environmental (solar) factors, all the while paying special attention to persons affected by more than one BCC. The study built on previous findings and recent developments in the field but set out to confirm and extend these and propose more adequate theories about the complex epidemiology of this cancer. Addressing these goals required a new approach to researching basal cell carcinoma, due to the need to account for the phenomenon of multiple incident BCCs per person. This was enabled by a 20 year community-based study of skin cancer in Australians that provided the methodological foundation for this thesis. Study participants were originally randomly selected in 1986 from the electoral register of all adult residents of the subtropical township of Nambour in Queensland, Australia. On various occasions during the study, participants were fully examined by dermatologists who documented cumulative photodamage as well as skin cancers. Participants completed standard questionnaires about skin cancer-related factors, and consented to have any diagnosed skin cancers notified to the investigators by regional pathology laboratories in Queensland. These methods allowed 100% ascertainment of histologically confirmed BCCs in this study population. 1339 participants had complete follow-up to the end of 2007. Statistical analyses in this thesis were carried out using SAS and SUDAAN statistical software packages. Modelling methods, including multivariate logistic regressions, allowed for repeated measures in terms of multiple BCCs per person. This innovative approach gave new findings on two levels, presented in five chapters as scientific papers: 1. Incidence of basal cell carcinoma multiplicity and detailed anatomic distribution: longitudinal study of an Australian population The incidence of people affected multiple times by BCC was 705 per 100,000 person years compared to an incidence rate of people singly affected of 935 per 100,000 person years. Among multiply and singly affected persons alike, site-specific BCC incidence rates were far highest on facial subsites, followed by upper limbs, trunk, and then lower limbs 2. Melanocytic nevi and basal cell carcinoma: is there an association? BCC risk was significantly increased in those with forearm nevi (Odds Ratios (OR) 1.43, 95% Confidence Intervals (CI) 1.09-1.89) compared to people without forearm nevi, especially among those who spent their time mainly outdoors (OR 1.6, 95%CI 1.1-2.3) compared to those who spent their time mainly indoors. Nevi on the back were not associated with BCC. 3. Clinical signs of photodamage are associated with basal cell carcinoma multiplicity and site: a 16-year longitudinal study Over a 16-year follow-up period, 58% of people affected by BCC developed more than one BCC. Among these people 60% developed BCCs across different anatomic sites. Participants with high numbers of solar keratoses, compared to people without solar keratoses, were most likely to experience the highest BCC counts overall (OR 3.3, 95%CI 1.4-13.5). Occurrences of BCC on the trunk (OR 3.3, 95%CI 1.4-7.6) and on the limbs (OR 3.7, 95%CI 2.0-7.0) were strongly associated with high numbers of solar keratoses on these sites. 4. Occurrence and determinants of basal cell carcinoma by histological subtype in an Australian community Among 1202 BCCs, 77% had a single growth pattern and 23% were of mixed histological composition. Among all BCCs the nodular followed by the superficial growth patterns were commonest. Risk of nodular and superficial BCCs on the head was raised if 5 or more solar keratoses were present on the face (OR 1.8, 95%CI 1.2-2.7 and OR 4.5, 95%CI 2.1-9.7 respectively) and similarly on the trunk in the presence of multiple solar keratoses on the trunk (OR 4.2, 95%CI 1.5-11.9 and OR 2.2, 95%CI 1.1-4.4 respectively). 5. Basal cell carcinoma and measures of cumulative sun exposure: an Australian longitudinal community-based study Dermal elastosis was more likely to be seen adjacent to head and neck BCCs than trunk BCCs (p=0.01). Severity of dermal elastosis increased on each site with increasing clinical signs of cutaneous sun damage on that site. BCCs that occurred without perilesional elastosis per se, were always found in an anatomic region with signs of photodamage. This thesis thus has identified the magnitude of the burden of multiple BCCs. It does not support the view that people affected by more than one BCC represent a distinct group of people who are prone to BCCs on certain body sites. The results also demonstrate that BCCs regardless of site, histology or order of occurrence are strongly associated with cumulative sun exposure causing photodamage to the skin, and hence challenge the view that BCCs occurring on body sites with typically low opportunities for sun exposure or of the superficial growth pattern are different in their association with the sun from those on typically sun-exposed sites, or nodular BCCs, respectively. Through dissemination in the scientific and medical literature, and to the community at large, these findings can ultimately assist in the primary and secondary prevention of BCC, perhaps especially in high-risk populations.
Resumo:
Spectrum sensing of multiple primary user channels is a crucial function in cognitive radio networks. In this paper we propose an optimal, sensing resource allocation algorithm for multi-channel cooperative spectrum sensing. The channel target is implemented as an objective and constraint to ensure a pre-determined number of empty channels are detected for secondary user network operations. Based on primary user traffic parameters, we calculate the minimum number of primary user channels that must be sensed to satisfy the channel target. We implement a hybrid sensing structure by grouping secondary user nodes into clusters and assign each cluster to sense a different primary user channels. We then solve the resource allocation problem to find the optimal sensing configuration and node allocation to minimise sensing duration. Simulation results show that the proposed algorithm requires the shortest sensing duration to achieve the channel target compared to existing studies that require long sensing and cannot guarantee the target.
Resumo:
PURPOSE The study was designed to examine the significance of colorectal metachronous carcinoma in a large cohort of patients. METHODS Over a mean follow-up period of 10 years, the clinicopathological features, microsatellite instability (MSI) and clinical follow-up of 56 patients with metachronous colorectal carcinoma were analysed. RESULTS The prevalence of metachronous colorectal carcinoma was 2.1 %. The metachronous colorectal carcinomas appeared between 7 and 246 months (mean = 66 months) after surgical resection of the index colorectal carcinomas. Thirty-six per cent (n = 20) of the metachronous carcinoma occurred more than 5 years after the operation of the index carcinoma. Of the 56 patients, 20 % (n = 11) of the metachronous colorectal carcinomas were mucinous adenocarcinoma. Cancers detected in the secondary operations (metachronous colorectal carcinomas), when compared with the primary index cancers, were smaller, showed higher proportions of mucinous adenocarcinoma and more often located in the proximal colon. Patients with metachronous colorectal cancers had higher prevalence of mucinous adenocarcinoma, loss of staining for MSI markers and better survival rates than other patients with colorectal cancers. CONCLUSIONS Patients with metachronous colorectal carcinomas have characteristic features, and attention to these features is important for better management of this group of cancer.
Resumo:
Introduction Systematic reviews, through the synthesis of multiple primary research studies, can be powerful tools in enabling evidence-informed public health policy debate, development and action. In seeking to optimize the utility of these reviews, it is important to understand the needs of those using them. Previous work has emphasized that researchers should adopt methods that are appropriate to the problems that public health decision-makers are grappling with, as well as to the policy context in which they operate.1,2 Meeting these demands poses significant methodological challenges for review authors and prompts a reconsideration of the resources, training and support structures available to facilitate the efficient and timely production of useful, comprehensive reviews. The Cochrane Public Health Group (CPHG) was formed in 2008 to support reviews of complex, upstream public health topics. The majority of CPHG authors are from the UK, which has historically been at the forefront of efforts to promote the production and use of systematic reviews of research relevant to public health decision-makers. The UK therefore provides a suitably mature national context in which to examine (i) the current and future demands of decision-makers to increase the use, value and impact of evidence syntheses; (ii) the implications this has for the scope and methods of reviews and (iii) the required action to build and support capacity to conduct such reviews.
Resumo:
Breast and colorectal cancers, are common types of cancer, with over two million newly diagnosed cases annually worldwide. Cancer is a genetic disease and defects in DNA integrity restoring functions make a significant contribution to cancer risk. CHEK2 is a checkpoint kinase functioning as a regulator of cell cycle checkpoints, apoptosis, and DNA repair in response to DNA double-strand breaks. The aim of this study was to evaluate the role of CHEK2 in breast cancer predisposition in Finnish breast cancer families and in breast cancer risk at the population level. We were interested in the clinical and biological characteristics of the breast tumors associated with the CHEK2 germline mutations or aberrant CHEK2 protein expression and the effect on survival of patients with these CHEK2 defects. We also assessed the role of CHEK2 mutations, namely 1100delC and I157T, in colorectal cancer susceptibility in Finland. CHEK2 I157T was found to be a low-penetrance breast cancer susceptibility allele, conferring a 1.4-fold risk for carriers. Reduced or absent CHEK2 protein expression was observed in one-fifth of breast tumors from patients unselected for family history, implying that defective CHEK2 signaling contributes to tumorigenesis. Reduction in CHEK2 expression was more common in tumors with larger diameter and ER expression, but with regard to other tumor characteristics and prognosis of a patient no association was observed. Results from comparison of CHEK2 1100delC carrier tumors with noncarrier tumors were in line with the findings from the CHEK2 expression study. Tumors from CHEK2 1100delC carriers were more often of higher grade than tumors from noncarriers, and they also tended to be ER-positive more often, although generally 1100delC status does not seem to radically affect the tumor characteristics. Our results suggest that CHEK2 1100delC may not be a susceptibility allele for CRC, although a very small effect cannot be excluded. Furthermore, CHEK2 1100delC is equally frequent in HBCC (hereditary breast and colorectal cancer) phenotype families and in breast cancer families. Over 1000 CRC cases were screened for CHEK2 I157T, and a significantly higher frequency of I157T was observed among both familial and sporadic CRC cases. The relation of CHEK2 I157T with familial CRC has not been studied previously. CHEK2 I157T seems to be a susceptibility allele for both familial and sporadic CRC, conferring a 1.5-fold risk for carriers of this variant. CHEK2 I157T has been proposed to have a role as a multiple cancer susceptibility allele, which is supported by our results since we observed a trend towards higher frequency of the variant among cases with multiple primary tumors or those with a family history of cancer. During the last five years CHEK2 has established its role as an important cancer susceptibility gene. It has become apparent that CHEK2 is a low-penetrance susceptibility gene for several cancer types, significantly contributing to familial cancer risk as well as to cancer risk at the population level.
Resumo:
In this paper, we study two multi-dimensional Goodness-of-Fit tests for spectrum sensing in cognitive radios. The multi-dimensional scenario refers to multiple CR nodes, each with multiple antennas, that record multiple observations from multiple primary users for spectrum sensing. These tests, viz., the Interpoint Distance (ID) based test and the h, f distance based tests are constructed based on the properties of stochastic distances. The ID test is studied in detail for a single CR node case, and a possible extension to handle multiple nodes is discussed. On the other hand, the h, f test is applicable in a multi-node setup. A robustness feature of the KL distance based test is discussed, which has connections with Middleton's class A model. Through Monte-Carlo simulations, the proposed tests are shown to outperform the existing techniques such as the eigenvalue ratio based test, John's test, and the sphericity test, in several scenarios.
Resumo:
Hereditary non-polyposis colorectal cancer (HNPCC), predominantly due to germline MLH1/MSH2 mutations, is the commonest form of hereditary colorectal cancer (CRC), but data in Asians are sparse. We sequenced the MLH1/MSH2 coding and promoter core regions in CRC patients diagnosed below age 40, and/or with multiple primary cancers or familial cancer clustering suggestive of HNPCC, and correlated deleterious mutations with clinical and tumour features. Forty-six Chinese, Malay and Indian kindreds participated. Of the 153 cancers reported in the 46 kindreds, stomach (14%) and urogenital cancers (13%) were the most common extracolonic cancers, whereas endometrial cancer comprised only 7%. Eleven different MLH1 and 12 MSH2 mutations were identified, including nine novel and four recurring mutations in the Chinese. One Indian was a compound heterozygote for an MLH1 and MSH2 mutation. The MLH1/MSH2 mutation data in the Malays and the Indians represents the first in these ethnic groups. Factors strongly associated with deleterious mutations were the Amsterdam criteria, family history of stomach or multiple primary cancers, and MSI-high tumours, whereas family history of endometrial cancer and young cancer age alone correlated poorly. Distinct clinical and molecular characteristics were identified among Asian HNPCC kindreds and may have important clinical implications.
Resumo:
Acute myeloid leukemia (AML) may follow a JAK2-positive myeloproliferative neoplasm (MPN), although the mechanisms of disease evolution, often involving loss of mutant JAK2, remain obscure. We studied 16 patients with JAK2-mutant (7 of 16) or JAK2 wild-type (9 of 16) AML after a JAK2-mutant MPN. Primary myelofibrosis or myelofibrotic transformation preceded all 7 JAK2-mutant but only 1 of 9 JAK2 wild-type AMLs (P = .001), implying that JAK2-mutant AML is preceded by mutation(s) that give rise to a "myelofibrosis" phenotype. Loss of the JAK2 mutation by mitotic recombination, gene conversion, or deletion was excluded in all wild-type AMLs. A search for additional mutations identified alterations of RUNX1, WT1, TP53, CBL, NRAS, and TET2, without significant differences between JAK2-mutant and wild-type leukemias. In 4 patients, mutations in TP53, CBL, or TET2 were present in JAK2 wild-type leukemic blasts but absent from the JAK2-mutant MPN. By contrast in a chronic-phase patient, clones harboring mutations in JAK2 or MPL represented the progeny of a shared TET2-mutant ancestral clone. These results indicate that different pathogenetic mechanisms underlie transformation to JAK2 wild-type and JAK2-mutant AML, show that TET2 mutations may be present in a clone distinct from that harboring a JAK2 mutation, and emphasize the clonal heterogeneity of the MPNs.
Resumo:
We propose transmit antenna selection with receive generalized selection combining (TAS/GSC) in dual-hop cognitive decode-and-forward (DF) relay networks for reliability enhancement and interference relaxation. In this paradigm, a single antenna which maximizes the receive signal-to-noise ratio (SNR) is selected at the secondary transmitter and a subset of receive antennas with the highest SNRs are combined at the secondary receiver. To demonstrate the impact of multiple primary users on the cognitive relay network, we derive new closed-form expressions for the exact and asymptotic outage probability with TAS/GSC in the secondary network. Several important design insights are reached. We corroborate that the full diversity gain is achieved, which is entirely determined by the total number of antennas in the secondary network. The negative impact of the primary network on the secondary network is reflected in the SNR gain.
Resumo:
In this paper, we investigate a multiuser cognitive relay network with direct source-destination links and multiple primary destinations. In this network, multiple secondary users compete to communicate with a secondary destination assisted by an amplify-and-forward (AF) relay. We take into account the availability of direct links from the secondary users to the primary and secondary destinations. For the considered system, we select one best secondary user to maximize the received signal-to-noise ratio (SNR) at the secondary destination. We first derive an accurate lower bound of the outage probability, and then provide an asymptotic expression of outage probability in high SNR region. From the lower bound and the asymptotic expressions, we obtain several insights into the system design. Numerical and simulation results are finally demonstrated to verify the proposed studies.
Resumo:
We propose transmit antenna selection (TAS) in decode-and-forward (DF) relaying as an effective approach to reduce the interference in underlay spectrum sharing networks with multiple primary users (PUs) and multiple antennas at the secondary users (SUs). We compare two distinct protocols: 1) TAS with receiver maximal-ratio combining (TAS/MRC) and 2) TAS with receiver selection combining (TAS/SC). For each protocol, we derive new closed-form expressions for the exact and asymptotic outage probability with independent Nakagami-m fading in the primary and secondary networks. Our results are valid for two scenarios related to the maximum SU transmit power, i.e., P, and the peak PU interference temperature, i.e., Q. When P is proportional to Q, our results confirm that TAS/MRC and TAS/SC relaying achieve the same full diversity gain. As such, the signal-to-noise ratio (SNR) advantage of TAS/MRC relaying relative to TAS/SC relaying is characterized as a simple ratio of their respective SNR gains. When P is independent of Q, we find that an outage floor is obtained in the large P regime where the SU transmit power is constrained by a fixed value of Q. This outage floor is accurately characterized by our exact and asymptotic results.