46 resultados para Neophocaena phocaenoides asiaeorientalis
Sonar gain control in echolocating finless porpoises (Neophocaena phocaenoides) in an open water (L)
Resumo:
Source levels of echolocating free-ranging Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) were calculated using a range estimated by measuring the time delays of the signals via the surface and bottom reflection paths to the hydrophone, relative to the direct signal. Peak-to-peak source levels for finless porpoise were from 163.7 to 185.6 dB re:1 mu Pa. The source levels are highly range dependent and varied approximately as a function of the one-way transmission loss for signals traveling from the animals to the hydrophone. (c) 2006 Acoustical Society of America.
Resumo:
Simultaneous tone-tone masking in conjunction with the envelope-following response (EFR) recording was used to obtain tuning curves in porpoises Phocoena phocoena and Neophocaena phocaenoides asiaeorientalis. The EFR was evoked by amplitude-modulated probes with a modulation rate of 1000 Hz and carrier frequencies from 22.5 to 140 kHz. Equivalent rectangular quality Q(ERB) of the obtained tuning curves varied from 8.3-8.6 at lower (22.5-32 kHz) probe frequencies to 44.8-47.4 at high (128-140 kHz) frequencies. The QERB dependence on probe frequency could be approximated by regression lines with a slope of 0.83 to 0.86 in log-log scale., which corresponded to almost frequency-proportional quality and almost constant bandwidth of 34 kHz. Thus, the frequency representation in the porpoise auditory system is much closer to a constant-bandwidth rather that to a constant-quality manner. (c) 2006 Acoustical Society of America.
Resumo:
Acoustic signals from wild Neophocaena phocaenoides sunameri were recorded in the waters off Liao-dong-wan Bay located in Bohai Sea, China. Signal analysis shows that N. p. sunameri produced "typical" phocoenid clicks. The peak frequencies f(p), of clicks ranged from. 113 to 131 kHz with an average of 121 +/- 3.78 kHz (n=71). The 3 dB bandwidths Delta f ranged from 10.9 to 25.0 kHz with an average of 17.5 +/- 3.30 kHz. The signal durations At ranged from 56 to 109 mu s with an average 80 +/- 11.49 mu s. The number of cycles N, ranged from 7 to 13 with an average of 9 +/- 1.48. With increasing peak frequency there was a faint tendency of decrease in bandwidth, which implies a nonconstant value of f(p)/Delta f. On occasion there were some click trains with faint click energy presenting below 70 kHz, however, it was possibly introduced by interference effect from multiple pulses structures. The acoustic parameters of the clicks were compared between the investigated population and a riverine population of finless porpoise. (c) 2007 Acoustical Society of America.
Resumo:
The signals of dolphins and porpoises often exhibit a multi-pulse structure. Here, echolocation signal recordings were made from four geometrically distinct positions of seven Yangtze finless porpoises temporarily housed in a relatively small, enclosed area. Some clicks demonstrated double-pulse, and others multi-pulse, structure. The interpulse intervals between the first and second pulse of the double- and multi-pulse clicks were significantly different among data from the four different positions (p < 0.01, one-way ANOVA). These results indicate that the interpulse interval and structure of the double- and multi-pulse echolocation signals depend on the hydrophone geometry of the animal, and that the double- and multi-pulse structure of echolocation signals in Yangtze finless porpoise is not caused by the phonating porpoise itself, but by the multipath propagation of the signal. Time delays in the 180 degrees phase-shifted surface reflection pulse and the nonphase-shifted bottom reflection pulse of the multi-pulse structures, relative to the direct signal, can be used to calculate the distance to a phonating animal. (c) 2005 Acoustical Society of America.
Resumo:
This paper describes the high-frequency echolocation signals from free-ranging Yangtze finless porpoise in the Tian-e-zhou Baiji National Natural Reserve in Hubei Province, China. Signal analysis showed that the Yangtze finless porpoise clicks are typical high-frequency narrow-band (relative width of the frequency spectrum Q=6.6 &PLUSMN; 1.56, N=548) ultrasonic pulses. The peak frequencies of the typical clicks range from 87 to 145 kHz with an average of 125 &PLUSMN; 6.92 kHz. The durations range from 30 to 122 μ s with an average of 68 &PLUSMN; 14.12 μ s. The characteristics of the signals are similar to those of other members of the Phocoenidae as well as the distantly related delphinids, Cephalorhynchus spp. Comparison of these signals to those of the baiji (Lipotes vexillifer), who occupies habitat similar to that of the Yangtze finless porpoise, showed that the peak frequencies of clicks produced by the Yangtze finless porpoise are remarkably higher than those produced by the baiji. Difference in peak frequency between the two species is probably linked to the different size of prefer-red prey fish. Clear double-pulse and multi-pulse reverberation structures of clicks are noticed, and there is no indication of any low-frequency (< 70 kHz) components during the recording period. © 2005 Acoustical Society of America.
Resumo:
Dive-depth and swim-speed of a juvenile and an adult free-ranging, Yangtze finless porpoises (Neophocaena phocaenoides) were observed using velocity-time-depth recorders in an oxbow of the Yangtze River. In total, 8222 individual dives were recorded over 59 hours. Two dive types, deep-dive (greater than or equal to 2.7 m) and shallow-dive. were recognized. Horizontal travel distances of two finless pot-poises in a day were 94.4 km and 90.3 km, which were longer than those of oceanic relative species (harbor porpoises, Phocoena phocoena). Although the shallow water limited the maximum dive-depth, dive-duration, and bottom-time of finless porpoises were similar to the harbor porpoises. A sudden drop of swim-speed below 0.25 m s(-1) was frequently observed nearby the maximum dive-depth. This seemed to indicate "turning, around" behaviour, possibly during prey pursuit. (C) 2002 Published by Elsevier science Ltd on behalf of International Council for the Exploration of the Sea.
Resumo:
The interclick intervals of captive dolphins are known to be longer than the two-way transit time between the dolphin and a target. In the present study, the interclick intervals of free-ranging baiji, finless porpoises, and bottlenose dolphins in the wild and in captivity were compared. The click intervals in open waters ranged up to 100-200 ms, whereas the click intervals in captivity were in the order of 4-28 ms. Echolocation of free-ranging dolphins appears to adapt to various distance in navigation or ranging, sometimes up to 140 m. Additionally, the difference of waveform characteristics of clicks between species was recognized in the frequency of maximum energy and the click duration. (C) 1998 Acoustical Society of America. [S0001-4966(98)06609-0].
Resumo:
运用截线抽样法调查了在春季4月间鄱阳湖区长江江豚(Neophocaena phocaenoides asiaeorientalis)的种群密度和数量,得出该地区长江江豚种群密度估计值为0.1940头/km2 ,估计数量为388头。探讨了截线抽样法用于浅水型淡水湖泊调查的可行性和有效性以及要注意的问题。
Resumo:
主要组织相容性复合体(Major histocompatibility complex,MHC)在脊椎动物的免疫系统中起着重要的作用,常作为适应性遗传标记应用于保护遗传学研究。长江江豚(Neophocaena phocaenoides asiaeorientalis)是惟一生活于淡水环境中的江豚种群,且已处于濒危状况。为了开发适用于长江江豚保护遗传学研究的MHC遗传标记,首次采用北象海豹(Mirounga angustirostris)的一对DRB基因引物对长江江豚的基因组进行扩增,从5个个体中成功扩增并
Resumo:
为了开发物种特异性微卫星标记,本文采用一种改良的快速微卫星分离法(FIASCO)从长江江豚(Neophocaena phocaenoides asiaeorientalis)的基因组中筛选得到72条微卫星DNA序列。根据重复单元的排列特点,完美型、非完美型及复合型序列所占的比例分别为58.3%、22.2%和19.5%。选择其中30条序列设计PCR扩增引物,并用12个随机选择的长江江豚样品进行多态性筛选。初步结果表明其中14对引物的扩增产物稳定并且具有多态性;在每个座位上获得2-13个等位基因,平均等位基因
Resumo:
根据室内饲养的3头长江江豚(Neophocaena phocaenoides asiaeorientalis)食物鲫(Carassius auratus)中锌(Zn)、铜 (Cu)、铅(Pb)、镉(Cd)、砷(As)的浓度值和饲养记录,推算出了饲养条件下江豚这些微量元素每日及每周估计摄入 量的范围。必需元素的需求方面与世界卫生组织/联合国粮农组织(WHO/FAO)提出的人暂定每周耐受摄人量 (PTWI)相类似,可是毒性较强的元素Cd、As、Pb的摄入量大大高于人体的PTWI。对湖北天鹅洲故道收集到的一头
Resumo:
运用截线抽样法调查了在春季4月间鄱阳湖区长江江豚(Neophocaena phocaenoides asiaeorientalis)的种群密度和数量,得出该地区长江江豚种群密度估计值为0.1940头/km2 ,估计数量为388头。探讨了截线抽样法用于浅水型淡水湖泊调查的可行性和有效性以及要注意的问题。
Resumo:
The Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) is currently limited to the middle and lower reaches of the Yangtze River from Yichang to Shanghai, China, and the adjoining Poyang and Dongting Lakes. Its population size has decreased remarkably during the last several decades due to the heavy impact of human activities, including overfishing of prey species, water development projects that cause attendant habitat loss and degradation, water pollution, and accidental deaths caused by harmful fishing gear and collisions with motorized vessels. It was estimated that the number of remaining individuals was down to approximately 1800 in 2006, a number that is decreasing at a rate as high as 5% per year. Three conservation measures - in situ and ex situ conservation and captive breeding have been applied to the protection of this unique porpoise since the early 1990s. Seven natural and two "semi-natural" reserves have so far been established. Since 1996, a small group of finless porpoises has been successfully reared in a facility at the Institute of Hydrobiology of the Chinese Academy of Sciences; three babies were born in captivity on July 5, 2005, June 2, 2007 and July 5, 2008. These are the first freshwater cetaceans ever born in captivity in the world. Several groups of these porpoises caught in the main stream of the Yangtze River, or rescued, have been introduced into the Tian'e-Zhou Semi-natural Reserve since 1990. These efforts have proven that, not only can these animals survive in the area, they are also to reproduce naturally and successfully. More than 30 calves had been born in the reserve since then, with one to three born each year. Taking deaths and transfers into account, there were approximately 30 individuals living in the reserve as of the end of 2007. Among eight mature females captured in April 2008, five were confirmed pregnant. This effort represents the first successful attempt at off-site protection of a cetacean species in the world, and establishes a solid base for conservation of the Yangtze finless porpoise. A lesson must be drawn from the tragedy of Chinese River Dolphin (Lipotes vexillifer), which has already been declared likely extinct. Strong, effective and appropriate protective measures must be carried out quickly to prevent the Yangtze finless porpoise from becoming a second Chinese River Dolphin, and save the biodiversity of the Yangtze River as a whole.
Resumo:
The detection performance regarding stationary acoustic monitoring of Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis was compared to visual observations. Three stereo acoustic data loggers (A-tag) were placed at different locations near the confluence of Poyang Lake and the Yangtze River, China. The presence and number of porpoises were determined acoustically and visually during each 1-min time bin. On average, porpoises were acoustically detected 81.7 +/- 9.7% of the entire effective observation time, while the presence of animals was confirmed visually 12.7 +/- 11.0% of the entire time. Acoustic monitoring indicated areas of high and low porpoise densities that were consistent with visual observations. The direction of porpoise movement was monitored using stereo beams, which agreed with visual observations at all monitoring locations. Acoustic and visual methods could determine group sizes up to five and ten individuals, respectively. While the acoustic monitoring method had the advantage of high detection probability, it tended to underestimate group size due to the limited resolution of sound source bearing angles. The stationary acoustic monitoring method proved to be a practical and useful alternative to visual observations, especially in areas of low porpoise density for long-term monitoring.
Resumo:
Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), a protected endangered species, is the sole freshwater subspecies of finless porpoise, living only in the middle and lower reaches of the Yangtze River, China, and its appended lakes. Its population has decreased sharply to 1,400 because of human activities, including environmental contamination. In the present study, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in the blubber, liver, kidney, stomach, small intestine, and brains of five individual Yangtze finless porpoises collected from 1998 to 2004. The results showed PCB concentrations ranged from 0.06 to 1.89 mu g/g lipid weight in the organs and consisted mainly of penta-, hexa-. and decachlorinated biphenyls. The PBDE concentrations were between 5.32 and 72.76 ng/g lipid weight. Tetra-, penta-, and hexabrominated diphenyl ethers were the major homologues. The PCDD/F concentrations ranged from 65 to 1,563 pg/g lipid weight, and their predominant homologues were penta- and hexachlorinated dibenzofurans and hepta- and octachlorinated dibenzo-p-dioxins. The hazard quotients (HQs) based on toxic equivalency were determined to be greater than one in all individuals for PCBs, for PCDD/Fs, and for PCBs and PCDD/Fs In addition, HQs would be higher if PBDEs were included. The results suggest that reduction of environmental contamination may contribute greatly to protecting this highly endangered species.