984 resultados para Natural vulnerability
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Guaraní aquifer has relevant importance both as a source of water for several urban centres and the development of agriculture and livestock. In recharge areas the aquifer is free and, therefore, subject to contamination of effluents and tailings deposited on soils that cover it. Thus, it becomes crucial not only its protection at all levels, as the knowledge of its degree of natural vulnerability. The present work used geostatistics modeling techniques to study the natural vulnerability of the Guaraní aquifer in the city of Rio Bonito, State of São Paulo, southeastern Brazil, where the Guarani aquifer is exposed. These techniques, extensively used in evaluation studies of mineral deposits and oil tanks, can be adapted to produce a spatial classification or a regionalisation of probabilistic indices of vulnerability. By ordinary kriging method maps of vulnerability classification were obtained. To determine the vulnerability of the aquifer was employed the Aquifer Vulnerability Index (AVI), which requires knowledge of unsaturated zone thickness and permeability. The final product was a map with probabilistic index of vulnerability of the Guaraní aquifer, which presented values between 0 to 0.33 years, framing the area studied in AVI class extremely high vulnerability
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Natural hazards such as landslides are triggered by numerous factors such as ground movements, rock falls, slope failure, debris flows, slope instability, etc. Changes in slope stability happen due to human intervention, anthropogenic activities, change in soil structure, loss or absence of vegetation (changes in land cover), etc. Loss of vegetation happens when the forest is fragmented due to anthropogenic activities. Hence land cover mapping with forest fragmentation can provide vital information for visualising the regions that require immediate attention from slope stability aspects. The main objective of this paper is to understand the rate of change in forest landscape from 1973 to 2004 through multi-sensor remote sensing data analysis. The forest fragmentation index presented here is based on temporal land use information and forest fragmentation model, in which the forest pixels are classified as patch, transitional, edge, perforated, and interior, that give a measure of forest continuity. The analysis carried out for five prominent watersheds of Uttara Kannada district– Aganashini, Bedthi, Kali, Sharavathi and Venkatpura revealed that interior forest is continuously decreasing while patch, transitional, edge and perforated forest show increasing trend. The effect of forest fragmentation on landslide occurrence was visualised by overlaying the landslide occurrence points on classified image and forest fragmentation map. The increasing patch and transitional forest on hill slopes are the areas prone to landslides, evident from the field verification, indicating that deforestation is a major triggering factor for landslides. This emphasises the need for immediate conservation measures for sustainable management of the landscape. Quantifying and describing land use - land cover change and fragmentation is crucial for assessing the effect of land management policies and environmental protection decisions.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
This document summarizes the regional implementation meeting on access rights and sustainable development in the Caribbean and the workshop on enhancing access to information on climate change, natural disasters and coastal vulnerability: leaving no one behind held in Rodney’s Bay, Saint Lucia, from 24 to 26 August 2015.
Resumo:
This study investigates four decades of socio-economic and environmental change in a shifting cultivation landscape in the northern uplands of Laos. Historical changes in land cover and land use were analyzed using a chronological series of remote sensing data. Impacts of landscape change on local livelihoods were investigated in seven villages through interviews with various stakeholders. The study reveals that the complex mosaics of agriculture and forest patches observed in the study area have long constituted key assets for the resilience of local livelihood systems in the face of environmental and socio-economic risks. However, over the past 20 years, a process of segregating agricultural and forest spaces has increased the vulnerability of local land users. This process is a direct outcome of policies aimed at increasing national forest cover, eradicating shifting cultivation and fostering the emergence of more intensive and commercial agricultural practices. We argue that agriculture-forest segregation should be buffered in such a way that a diversity of livelihood opportunities and economic development pathways can be maintained.
Resumo:
The southernmost European natural and planted pine forests are among the most vulnerable areas to warming-induced drought decline. Both drought stress and management factors (e.g., stand origin or reduced thinning) may induce decline by reducing the water available to trees but their relative importances have not been properly assessed. The role of stand origin - densely planted vs. naturally regenerated stands - as a decline driver can be assessed by comparing the growth and vigor responses to drought of similar natural vs. planted stands. Here, we compare these responses in natural and planted Black pine (Pinus nigra) stands located in southern Spain. We analyze how environmental factors - climatic (temperature and precipitation anomalies) and site conditions - and biotic factors - stand structure (age, tree size, density) and defoliation by the pine processionary moth - drive radial growth and crown condition at stand and tree levels. We also assess the climatic trends in the study area over the last 60 years. We use dendrochronology, linear mixed-effects models of basal area increment and structural equation models to determine how natural and planted stands respond to drought and current competition intensity. We observed that a temperature rise and a decrease in precipitation during the growing period led to increasing drought stress during the late 20th century. Trees from planted stands experienced stronger growth reductions and displayed more severe crown defoliation after severe droughts than those from natural stands. High stand density negatively drove growth and enhanced crown dieback, particularly in planted stands. Also pine processionary moth defoliation was more severe in the growth of natural than in planted stands but affected tree crown condition similarly in both stand types. In response to drought, sharp growth reduction and widespread defoliation of planted Mediterranean pine stands indicate that they are more vulnerable and less resilient to drought stress than natural stands. To mitigate forest decline of planted stands in xeric areas such as the Mediterranean Basin, less dense and more diverse stands should be created through selective thinning or by selecting species or provenances that are more drought tolerant. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Reducing risk that emerges from hazards of natural origin and societal vulnerability is a key challenge for the development of more resilient communities and the overall goal of sustainable development. The following chapter outlines a framework for multidimensional, holistic vulnerability assessment that is understood as part of risk evaluation and risk management in the context of Disaster Risk Management (DRM) and Climate Change Adaptation (CCA). As a heuristic, the framework is a thinking tool to guide systematic assessments of vulnerability and to provide a basis for comparative indicators and criteria development to assess key factors and various dimensions of vulnerability, particularly in regions in Europe, however, it can also be applied in other world regions. The framework has been developed within the context of the research project MOVE (Methods for the Improvement of Vulnerability Assessment in Europe; ) sponsored by the European Commission within the framework of the FP 7 program.