983 resultados para Natural diet
Resumo:
Mode of access: Internet.
Resumo:
Fetal flavor conditioning during the perinatal stage could be essential at the time of the weaning to reduce the stress and improve the feed intake in pigs. The transfer of flavor compounds from maternal diet to amniotic fluid and milk has been shown in behavioral experiments, but not through analytical procedures such as gas chromatography–mass spectrometry (GC–MS). The aim of the experiment was to trace the principal essential oils compounds supplied in the diet in maternal fluids. Twenty Large White sows around their 104th gestational day were allocated to individual farrowing crates. Two groups of 10 sows were fed either a standard gestation diet or the same diet supplemented with a mix of 8 essential oils at a rate of 1kg/ton during the last 10 days of gestation. At approximately the 113th gestational day, animals were individually treated with 10mg of Lutalyse IM was to induce farrowing. Fresh amniotic fluid was collected during the farrowing in 100-mL glass bottles and immediately stored at −20 °C freezer. During the second lactation day, 10–20 IU of Oxytocin IM was administered to each sow to facilitate collection of milk samples in 20-mL glass bottles. The samples were stored at −20 °C until analyzed by GC–MS. The presence of significant amounts of principal components of all the essential oils except one were found in the milk and amniotic fluid samples of the treated sows relative to the control sows. Our data prove the transfer of selected dietary flavors to maternal fluids and sets the scenario for further trials to manipulate postweaning behavior in piglets.
Resumo:
Background: The prevalence and severity of obesity and associated co-morbidities are rapidly increasing across the world. Natural products-based drug intervention has been proposed as one of the crucial strategies for management of obesity ailments. This study was designed to investigate the anti-obesity activities of ethanolic extract of Terminalia paniculata bark (TPEE) on high fat diet-induced obese rats. Methods: LC-MS/MS analysis was done for ethanolic extract of T. paniculata bark. Male Sprague-Dawley (SD) rats were randomly divided into six groups of six each, normal diet fed (NC), high fat diet-fed (HFD), HFD+ orlistat (standard drug control) administered, and remaining three groups were fed with HFD + TPEE in different doses (100,150 and 200 mg/kg b. wt). For induction of obesity rats were initially fed with HFD for 9 weeks, then, (TPEE) was supplemented along with HFD for 42 days. Changes in body weight, body composition, blood glucose, insulin, tissue and serum lipid profiles, atherogenic index, liver markers, and expression of adipogenesis-related genes such as leptin, adiponectin, FAS, PPARgamma, AMPK-1alpha and SREBP-1c, were studied in experimental rats. Also, histopathological examination of adipose tissue was carried out. Results: Supplementation of TPEE reduced significantly (P < 0.05) body weight, total fat, fat percentage, atherogenic index, blood glucose, insulin, lipid profiles and liver markers in HFD-fed groups, in a dose-dependent manner. The expression of adipogenesis-related genes such as Leptin, FAS, PPARgamma, and SREBP-1c were down regulated while Adiponectin and AMPK-1alpha were up regulated in TPEE + HFD-fed rats. Furthermore, histopathological examination of adipose tissue revealed the alleviating effect of TPEE which is evident by reduced size of adipocytes. Conclusions: Together, the biochemical, histological and molecular studies unambiguously demonstrate the potential anti adipogenic and anti obesity activities of TPEE promoting it as a formidable candidate to develop anti obesity drug.
Resumo:
Fish culture experiments were conducted to compare and evaluate the feeding pattern and strategies, daily ration, gastric evacuation rates, dietary breadth, similarity and overlap of silver barb, Barbodes gonionotus, and tilapia, Oreochromis sp. (natural hybrid of O. mossambicus x O. niloticus) in a rice-fish system. B. gonionotus was found to be a macrophtophagous column feeder while Oreochromis sp. was a detrivorous benthophagic browser. Ontogenic shifts in diet were clearly observed in B. gonionotus while absent in Oreochromis sp. For both species, daily food ration for the small fish was twice as large as that for the large fish. Mean rates of gastric evacuation were 0.18 h super(1) for small and 0.05 h super(1) for large B. gonionotus and 0.09 h super(1) and 0.14h super(1) for small and large Oreochromis sp., respectively. In terms of intraspecific dietary width, the smaller sized individuals of both species had a wider dietary niche than the larger conspecifics. Larger fish increased their specialization and reliance on few food items with increasing size and competitive ability. When both species were reared together, B. gonionotus showed a wider niche width than tilapia. Wider interspecific niche width of B. gonionotus compared to that of tilapia and significant interspecific dietary overlap is likely to result in suppression of the growth of tilapia in mixed culture due to: 1) a high degree of specialization and reliance of tilapia on food of low-nutrient value, and 2) slower gastric evacuation rates as compared to B. gonionotus, which would allow B. gonionotus to outgrow similar sized tilapia.
Resumo:
The diet of a habituated group of black crested gibbon (Nomascus concolor jingdongensis) was studied from March 2005 to April 2006 in the Wuliang Mountains, central Yunnan, China. Gibbons consumed 77 different plant species, one mammal-, two bird-, one li
Resumo:
A 21-d laboratory experiment was conducted to study, the phosphorus (P) utilization of two different diets by redlip mullet Liza haematocheila T. & S. Sand-filtered water in salinity 30 and temperature 25 degrees C was used. Twenty-nine fish individuals were divided into three groups: 11 to group 1 (G1) fed on diet 1, 11 to group 2 (G2) fed on diet 2, and 7 to contrast group. Diet 1 was a commercial feed, more valuable in nutrition than diet 2 that similar to natural detritus. The results show the intake phosphorus (IP) of G1 was significantly higher than that of G2, and both increased linearly with body size at a certain amount of diet. The retention phosphorus (RP) in fish of G1 was lower than G2. The relationship between retention phosphorus and body size was positive and stronger in G2. Significant difference in faecal phosphorus (FP) was found between G1 and G2. Body size significantly impacted the excretion phosphorus (EP) in G1 but G2. The loss of intake phosphor-us in G1 was 10.83-20.27 mg per g fish weight gain, higher than that in G2 for 6.63-9.56. Of the phosphor-us, about 10% was allocated into growth, 50% in faeces, and the rest lost in excretion. The main part of phosphorus was lost in faeces but excretion. The phosphorus budget of the fish could be described as 100IP = 7.40RP + 47.39FP + 36.63EP (Diet 1) or 100IP = 11.93RP + 56.64FP + 21.76EP (Diet 2).
Feeding selectivity of bivalve larvae on natural plankton assemblages in the Western English Channel
Resumo:
Meroplankton, including bivalve larvae, are an important and yet understudied component of coastal marine food webs. Understanding the baseline of meroplankton ecology is imperative to establish and predict their sensitivity to local and global marine stressors. Over an annual cycle (October 2009–September 2010), bivalve larvae were collected from the Western Channel Observatory time series station L4 (50°15.00′N, 4°13.02′W). The morphologically similar larvae were identified by analysis of the 18S nuclear small subunit ribosomal RNA gene, and a series of incubation experiments were conducted to determine larval ingestion rates on natural plankton assemblages. Complementary gut content analysis was performed using a PCR-based method for detecting prey DNA both from field-collected larvae and those from the feeding experiments. Molecular identification of bivalve larvae showed the community composition to change over the course of the sampling period with domination by Phaxas in winter and higher diversity in autumn. The larvae selected for nanoeukaryotes (2–20 µm) including coccolithophores (<20 µm) which together comprised >75 % of the bivalve larvae diet. Additionally, a small percentage of carbon ingested originated from heterotrophic ciliates (<30 µm). The molecular analysis of bivalve larvae gut content provided increased resolution of identification of prey consumed and demonstrated that the composition of prey consumed established through bottle incubations conferred with that established from in situ larvae. Despite changes in bivalve larvae community structure, clearance rates of each prey type did not change significantly over the course of the experiment, suggesting different bivalve larvae species may consume similar prey.
Resumo:
Knowledge about the diet of fish-eating predators is critical when evaluating conflicts with the fishing industry. Numerous primary studies have examined the diet of grey seals Halichoerus grypus and common seals Phoca vitulina in a bid to understand the ecology of these predators. However, studies of large-scale spatial and temporal variation in seal diet are limited. Therefore this review combines the results of seal diet studies published between 1980 and 2000 to examine how seal diet varies at a range of spatial and temporal scales. Our results revealed extensive spatial variation in gadiform, perciform and flatfish consumption, likely reflecting variation in prey availability. Flatfish and gadiform consumption varied between years, reflecting changes in fish assemblages as a consequence of factors such as varying fishing pressures, climate change and natural fluctuations in populations. Perciform and gadiform consumption varied seasonally: in addition there was a significant interaction between season and seal species, indicating that grey and common seals exhibited different patterns of seasonal variation in their consumption of Perciformes and Gadiformes. Multivariate analysis of grey seal diet revealed spatial variation at a much smaller scale, with different species dominating the diet in different areas. The existence of spatial and temporal variation in seal diet emphasizes that future assessments of the impact of seal populations should not be based on past or localized estimates of diet and highlights the need for up-to-date, site specific estimates of diet composition in the context of understanding and resolving seal/fisheries conflict. © 2012 Marine Biological Association of the United Kingdom.
Resumo:
The Eurasian otter (Lutra lutra L.) is a top predator in aquatic systems and plays an important role in ecosystem functioning. However, it has undergone dramatic declines throughout Europe as a result of environmental degradation. We examine the putative role of the otter as a bioindicator in Ireland which remains a stronghold for the species and affords a unique opportunity to examine variation in its ecological niche. We describe diet, using spraint contents, along rivers during 2010 and conduct a review and quantitative meta-analysis of the results of a further 21 studies. We aimed to assess variation in otter diet in relation to river productivity, a proxy for natural nutrification and anthropogenic eutrophication, and availability of salmonid prey (Salmo trutta and Salmo salar), to test the hypothesis that otter diet is related to environmental quality. Otter diet did not vary with levels of productivity or availability of salmonids whilst Compositional Analysis suggested there was no selection of salmonid over non-salmonid fish. There was a distinct niche separation between riverine and lacustrine systems, the latter being dominated by Atlantic eel (Anguilla anguilla). Otters are opportunistic and may take insects, freshwater mussels, birds, mammals and even fruit. Otters living along coasts have a greatest niche breath than those in freshwater systems which encompasses a wide variety of intertidal prey though pelagic fish are rarely taken. It is concluded that the ability of the otter to feed on a wide diversity of prey taxa and the strong influence of habitat type, renders it a poor bioindicator of environmental water quality. It seems likely that the plasticity of the habitat and dietary niche of otters, and the extent of suitable habitat, may have sustained populations in Ireland despite intensification of agriculture during the 20th century.
Resumo:
There is a significant increase in people that choose to follow an avoidance diet, especially excluding gluten. Unlike previously, there is now a demand for ‘no compromise’ gluten-free cereal products that have the same properties as their wheat contain counterparts. This is very challenging for the bakers and the cereal technologists due to the functional role of the gluten network in some of these products. Numerous combinations of raw materials form natural sources have been studied and critically evaluated in this review. Most of the gluten-free products are made of native and modified starches blended with different hydrocolloids due to their structure-building and water binding properties. These ingredients are added to a gluten-free flour, such as rice and corn. The legislation framework, formulations for manufacturing of highl nutritional value bread, pasta and cakes/biscuits as well as quality assurance aspects for the gluten-free manufacturers are discussed in this review.
Resumo:
Tese de doutoramento, Biologia (Ecologia), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
In disease ecology, there is growing evidence that environmental quality interacts with parasite and host to determine host susceptibility to an infection. Most studies of malaria parasites have focused on the infection costs incurred by the hosts, and few have investigated the costs on mosquito vectors. The interplay between the environment, the vector and the parasite has therefore mostly been ignored and often relied on unnatural or allopatric Plasmodium/vector associations. Here, we investigated the effects of natural avian malaria infection on both fecundity and survival of field-caught female Culex pipiens mosquitoes, individually maintained in laboratory conditions. We manipulated environmental quality by providing mosquitoes with different concentrations of glucose-feeding solution prior to submitting them to a starvation challenge. We used molecular-based methods to assess mosquitoes' infection status. We found that mosquitoes infected with Plasmodium had lower starvation resistance than uninfected ones only under low nutritional conditions. The effect of nutritional stress varied with time, with the difference of starvation resistance between optimally and suboptimally fed mosquitoes increasing from spring to summer, as shown by a significant interaction between diet treatment and months of capture. Infected and uninfected mosquitoes had similar clutch size, indicating no effect of infection on fecundity. Overall, this study suggests that avian malaria vectors may suffer Plasmodium infection costs in their natural habitat, under certain environmental conditions. This may have major implications for disease transmission in the wild.
Resumo:
Female crickets respond selectively to variations in species-specific male calling songs. This selectivity has been shown to be age-dependent; older females are less choosy. However, female quality should also affect female selectivity. The effect of female quality on mate choice was examined in Gryllus integer by comparing the phonotactic responses of females on different diets and with different parasite loads to various synthetic models of conspecific calling song. Test females were virgin, 11-14 days old, and had been maintained on one of five diets varying in protein and fat content. Phonotaxis was quantified using a non-compensating Kugel treadmill which generates vector scores incorporating the speed and direction of movement of each female. Test females were presented with four calling song models which differed in pulse rate, but were still within the natural range of the species for the experimental temperature. After testing, females were dissected and the number of gregarine parasites within the digestive tract counted. There were no significant effects of either diet or parasitism on female motivation to mate although the combined effects of these variables seem to have an effect with no apparent trend. Control females did not discriminate among song types, but there was a trend of female preferences for lower pulse rates which are closest to the mean pulse rate for the species. Heavily parasitized females did not discriminate among pulse rates altho~gh there was a similar trend of high vector scores for low pulse rates. Diet, however, affected selectivity with poorly-fed females showing significantly high vector scores for pulse rates near the species mean. Such findings raise interesting questions about energy allocation and costs and risks of phonotaxis and mate choice in acoustic Orthoptera. These results are discussed in terms of sexual selection and female mate choice.
Resumo:
In the field, mosquitoes characteristically feed on sugars soon after emergence and intermittently during their adult lives. Sugar meals are commonly derived from plant nectar and homopteran honeydew, and without them, adults can only survive for a few days on larval reserves. In addition to sugar, females of most species rely on blood for the initiation and maintenance of egg development; thus their reproductive success depends to some extent on the availability of blood hosts. Males, on the other hand, feed exclusively on sugars. Consequently, their sexual maturation and reproductive success is largely dependent upon access to sugar sources. Plant nectar and homopteran honeydew are the two main sugar sources utilized by mosquitoes in the wild. Previous laboratory studies had shown that differences between nectar sources can affect the survivorship and biting frequency of disease vectoring mosquitoes. However, little is known on how sugar composition influence the reproductive processes in male mosquitoes. Male mosquitoes transfer accessory gland proteins and other hormones to their mates along with sperm during mating. In the female, these seminal fluid constituents exert their influence on reproductive genes that control ovulation and vitellogenesis. The present study tests the hypothesis that the mates of males consuming different sugar meals will exhibit varying levels of induction of vitellogenin (a gene which regulates the expression of egg yolk precursor proteins). Real-time quantitative RT-PCR was used to investigate how each sugar meal indirectly influences vitellogenin mRNA abundance in female Anopheles stephensi following mating. Results indicate that mates of nectar-fed males exhibit 2-fold greater change in vitellogenin expression than the mates of honeydew-fed males. However, this response did not occur in non-blood fed controls. These findings suggest that the stimulatory effect of mating on vitellogenesis in blood meal-reliant (i.e. anautogenous) mosquitoes may only be synergistic in nature. The present study also sought to compare the potential fitness costs of mating incurred by females that do not necessarily require a blood meal to initiate a reproductive cycle (i.e., exhibit autogeny). Females of the facultatively autogenous mosquito, Culex molestus were allowed to mate with males sustained on either nectar or honedyew. Mean lifetime fecundity and survivorship of females under the two different mating regimes were then recorded. Additionally, one-dimensional gel electrophoresis was used to verify the transfer of male accessory gland proteins to the sperm storage organs of females during mating.While there was no significant difference in survival between the test treatments, the mates of nectar-fed males produced 11% more eggs on average than mates of honeydew-fed males. However, additional data are needed to justify the extrapolation of these findings to natural settings. These findings prompt further investigation as the differences caused by diet variation in males may be reflected across other life history traits such as mating frequency and insemination capacity.