1000 resultados para NUCLEON INTERACTION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within the Brueckner-Hartree-Fock framework, the equation of state and the properties of newborn neutron stars are investigated by adopting a realistic nucleon-nucleon interaction AV(18) supplemented with a microscopic three-body force or a phenomenological three-body force. The maximum mass of newborn neutron star and the proton fraction in the newborn beta-stable neutron-star matter are calculated. The neutrino-trapping and the three-body force effects are discussed, and the interplay between the effects of the trapped neutrino and the three-body force are especially explored. It is shown that neutrino trapping considerably affects the proton abundance and the equation of state of the newborn neutron star in both cases with and without the three-body forces. The effect of neutrino trapping remarkably enhances the proton abundance, and the contribution of the three-body force makes the equation of state of the newborn neutron star much stiffer at high densities and consequently increases the proton abundance strongly. The trapped neutrinos significantly reduce the influence of the three-body force on the proton abundance in newborn neutron stars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We extend the Brueckner-Hartree-Fock (BHF) approach to include the three-body force (TBF) rearrangement contribution in calculating the neutron and proton single particle (s.p.) properties in isospin asymmetric nuclear matter. We investigate the TBF rearrangement effect on the momentum-dependence of neutron and proton s.p. potentials, the isospin splitting and especially its density dependence of the neutron and proton effective masses, and the isospin symmetry potential in neutron-rich nuclear matter by adopting the realistic Argonne V-18 two-body nucleon-nucleon interaction supplemented with a microscopic TBF. We find that at low densities, the TBF rearrangement effect is fairly weak, whereas the TBF induces a significant rearrangement effect on the s.p. properties at high densities and large momenta. The TBF rearrangement contribution to s.p. potential is shown to be repulsive, and it reduces considerably the attraction of the BHF s.p. potential. The repulsion from the TBF rearrangement turns out to be strongly momentum dependent at high densities and high momenta. As a consequence, it enhances remarkably the momentum dependence of the proton and neutron s.p. potentials and reduces the neutron and proton effective masses. At low densities, the TBF rearrangement effect on symmetry potential is almost negligible, while at high densities, it enlarges sizably the symmetry potential. At high enough densities, it may even change the high-momentum behavior of symmetry potential. In both cases, with and without including the TBF rearrangement contribution, the predicted neutron effective mass is larger than the proton one in neutron-rich matter within the BHF framework; i.e., the predicted isospin splitting of the proton and neutron effective masses in neutron-rich matter is such that m(n)(*)>= m(p)(*), in agreement with the recent Dirac-BHF predictions. The TBF rearrangement contribution reduces remarkably the magnitude of the proton-neutron effective mass splitting at high densities. At high enough densities, inclusion of the TBF rearrangement contribution even suppresses almost completely the effective mass splitting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within an extended chiral constituent quark model, the three- and five-quark structure of the S-01 resonance Lambda(1405) is investigated. Helicity amplitudes for electromagnetic decays [Lambda(1405)->Lambda(1116)gamma, Sigma(1194)gamma] and transition amplitudes for strong decays [Lambda(1405)->Sigma(1194)pi, K- p] are derived, as well as the relevant decay widths. The experimental value for the strong decay width, Gamma(Lambda(1405)->(Sigma pi)degrees) = 50 +/- 2MeV, is well reproduced with about 50% of a five-quark admixture in the Lambda(1405). Important effects owing to the configuration mixing among Lambda P-2(1)A, Lambda P-2(8)M, and Lambda P-4(8)M are found. In addition, transitions between the three- and the five-quark components in the baryons turn out to be significant in both radiative and strong decays of the Lambda(1405) resonance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing need for cross sections far from the valley of stability, especially for applications such as nuclear astrophysics, poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematic relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by an effective nucleon-nucleon interaction. All these microscopic ingredients have been included in the latest version of the TALYS nuclear reaction code (http://www.talys.eu/).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple method is presented to evaluate the effects of short-range correlations on the momentum distribution of nucleons in nuclear matter within the framework of the Greens function approach. The method provides a very efficient representation of the single-particle Greens function for a correlated system. The reliability of this method is established by comparing its results to those obtained in more elaborate calculations. The sensitivity of the momentum distribution on the nucleon-nucleon interaction and the nuclear density is studied. The momentum distributions of nucleons in finite nuclei are derived from those in nuclear matter using a local-density approximation. These results are compared to those obtained directly for light nuclei like 16O.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of the tensor component of the Skyrme effective nucleon-nucleon interaction on the single-particle structure in superheavy elements is studied. A selection of the available Skyrme forces has been chosen and their predictions for the proton and neutron shell closures investigated. The inclusion of the tensor term with realistic coupling strength parameters leads to a small increase in the spin-orbit splitting between the proton 2f7/2 and 2f5/2 partners, opening the Z=114 shell gap over a wide range of nuclei. The Z=126 shell gap, predicted by these models in the absence of the tensor term, is found to be stongly dependent on neutron number with a Z=138 gap opening for large neutron numbers, having a consequent implication for the synthesis of neutron-rich superheavy elements. The predicted neutron shell structures remain largely unchanged by inclusion of the tensor component.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we present new coupled channel calculations with the Sao Paulo potential (SPP) as the bare interaction, and an imaginary potential with system and energy independent normalization that has been developed to take into account dissipative processes in heavy-ion reactions. This imaginary potential is based on high-energy nucleon interaction in nuclear medium. Our theoretical predictions for energies up to approximate to 100 MeV/nucleon agree very well with the experimental data for the p, n + nucleus, (16)O + (27)Al, (16)O + (60)Ni, (58)Ni + (124)Sn, and weakly bound projectile (7)Li + (120)Sn systems. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many-body systems of composite hadrons are characterized by processes that involve the simultaneous presence of hadrons and their constituents. We briefly review several methods that have been devised to study such systems and present a novel method that is based on the ideas of mapping between physical and ideal Fock spaces. The method, known as the Fock-Tani representation, was invented years ago in the context of atomic physics problems and was recently extended to hadronic physics. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, Hermitian Hamiltonians with a clear physical interpretation are obtained. The use of the method in connection with the linked-cluster formalism to describe short-range correlations and quark deconfinement effects in nuclear matter is discussed. As an application of the method, an effective nucleon-nucleon interaction is derived from a constituent quark model and used to obtain the equation of state of nuclear matter in the Hartree-Fock approximation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quark-model descriptions of the nucleon-nucleon interaction contain two main ingredients, a quark-exchange mechanism for the short-range repulsion and meson exchanges for the medium- and long-range parts of the interaction. We point out the special role played by higher partial waves, and in particular the (1)F(3), as a very sensitive probe for the meson-exchange pan employed in these interaction models. In particular, we show that the presently available models fail to provide a reasonable description of higher partial waves and indicate the reasons for this shortcoming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A collective Hamiltonian for a two alpha particles aggregate, which describes the 8Be nucleus, encompassing a collective potential and an inertia function of that system, is obtained and analyzed through the use of a technique - derived from an approach of the generator coordinate method (GCM) - which allows for the extraction of collective information. The nucleon-nucleon interaction considered here is the one proposed by Volkov plus the Coulomb repulsion. It is shown that nonlocal effects appear in those collective functions describing the spontaneously occurring breakup process. Furthermore, the result for the inertia function stands for a microscopically generated evidence supporting a double-folding-based model of the real part of the nucleus-nucleus nonlocal interaction recently proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The momentum dependence of the ρ0-ω mixing contribution to charge-symmetry breaking (CSB) in the nucleon-nucleon interaction is compared in a variety of models. We focus in particular on the role that the structure of the quark propagator plays in the predicted behaviour of the ρ0-ω mixing amplitude. We present new results for a confining (entire) quark propagator and for typical propagators arising from explicit numerical solutions of quark Dyson-Schwinger equations We compare these to hadronic and free quark calculations The implications for our current understanding of CSB experiments is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mit der Erweiterung des Elektronenbeschleunigers MAMI um eine dritte Stufe ist es möglich geworden, am Institut für Kernphysik Teilchen mit offener Strangeness zu produzieren. Für deren Nachweis ist die Drei-Spektrometeranlage der Kollaboration A1 um das von der GSI in Darmstadt übernommene KAOS-Spektrometer erweitert worden. Untersucht wird damit die elementare Reaktion p(e,e' K+)Lambda/Sigma0 wobei das auslaufende Elektron und das Kaon nachgewiesen werden müssen. Wird als Target nicht Wasserstoff verwendet, besteht die Möglichkeit dass sich ein Hyperkern bildet. Spektroskopische Untersuchungen an diesen bieten die Möglichkeit das Potential von Hyperonen in Atomkernen und die Hyperon-Nukleon-Wechselwirkung zu untersuchen. Aufgrund der hervorragenden Strahlqualität bei der Elektroproduktion können hier Massenauflösungen von einigen hundert keV/c² erreicht werden. Mit Hilfe von GEANT4 wurden die Detektoren und die Abbildungseigenschaften des Spektrometers simuliert. Geeignete Ereignisgeneratoren wurden implementiert. Es wurde untersucht, wie mögliche Treffermuster in den Detektoren aussehen, die von einem Trigger auf FPGA-Basis selektiert werden müssen. Ebenso konnte hieraus eine erste Abbildung der Spurkoordinaten auf die Targetkoordinaten und den Teilchenimpuls gewonnen werden. Für das Hyperkernprogramm muss KAOS unter 0° Vorwärtsrichung betrieben werden und der Primärstrahl mit Hilfe einer Schikane durch den Dipol gelenkt werden. Die Simulation zeigt hier eine nur moderate Erhöhung der Strahlenbelastung, vor allem im Bereich des Strahlfängers. Somit ist es möglich, KAOS als doppelseitiges Spektrometer in der Spektrometerhalle zu betreiben. Im Rahmen dieser Arbeit wurden die für sämtliche Detektoren nötige Auslese- und Steuerungselektronik in das vorhandene Datenerfassungssystem und das Steuerungssystem eingebunden. In zwei Strahlzeiten im Herbst 2008 wurden Kaonen im Winkelbereich von 20°-40° mit Impulsen zwischen 400MeV/c und 600MeV/c nachgewiesen. Die aus der Simulation gewonnenen Daten zum Trigger und zur Abbildung kamen zum Einsatz. Es konnte die für eine gute Teilchenidentifikation nötige Zeitauflösung von ca. 1ns FWHM erreicht werden. Die erreichte Winkel- und Impulsauflösung war ausreichend um Lambda und Sigma0-Hyperonen im Spektrum der fehlenden Masse leicht trennen zu können.