949 resultados para NOSOCOMIAL OUTBREAK
Resumo:
INTRODUCTION: The outbreak occurred between February and June 2006 and included identification of the cases, analysis of medical records, cultures from environmental sources, resistance analyses and genotyping profile of Serratia marcescens. METHODS: The cultures were composed of 13 blood isolates, 17 rectal and hand swabs and air sampling. RESULTS: The data obtained by pulsed-field gel electrophoresis exhibited three strains that contaminated 24 patients. Systemic infection was the most common in neonates with lower weight, long periods of hospitalization, premature delivery and the use of mechanical ventilation. CONCLUSIONS: This investigation revealed the multifactorial nature of the outbreak. An endemic clone of S. marcescens was detected.
Resumo:
S. Gianella, L. Haeberli, B. Joos, B. Ledergerber, R.P. Wüthrich, R. Weber, H. Kuster, P.M. Hauser, T. Fehr, N.J. Mueller. Molecular evidence of interhuman transmission in an outbreak of Pneumocystis jirovecii pneumonia among renal transplant recipients. Transpl Infect Dis 2009. All rights reserved Abstract: Pneumocystis jirovecii pneumonia (PCP) remains an important cause of morbidity and mortality in immunocompromised individuals. The epidemiology and pathogenesis of this infection are poorly understood, and the exact mode of transmission remains unclear. Recent studies reported clusters of PCP among immunocompromised patients, raising the suspicion of interhuman transmission. An unexpected increase of the incidence of PCP cases in our nephrology outpatient clinic prompted us to conduct a detailed analysis. Genotyping of 7 available specimens obtained from renal transplant recipients was performed using multi-locus DNA sequence typing (MLST). Fragments of 4 variable regions of the P. jirovecii genome (ITS1, 26S, mt26S, beta-tubulin) were sequenced and compared with those of 4 independent control patients. MLST analysis revealed identical sequences of the 4 regions among all 7 renal allograft recipients with available samples, indicating an infection with the same P. jirovecii genotype. We observed that all but 1 of the 19 PCP-infected transplant recipients had at least 1 concomitant visit with another PCP-infected patient within a common waiting area. This study provides evidence that nosocomial transmission among immunocompromised patients may have occurred in our nephrology outpatient clinic. Our findings have epidemiological implications and suggest that prolonged chemoprophylaxis for PCP may be warranted in an era of more intense immunosuppression.
Resumo:
An outbreak of vancomycin-resistant enterococci (VRE) occurred in 2011 in several hospitals of western Switzerland. Given that VRE can spread rapidly within hospitals and due to the potential transfer of resistance genes to other nosocomial pathogens like MRSA, stringent control measures were implemented. Excellent coordination of control measures between partner healthcare settings was successful in stopping the outbreak.
Resumo:
BACKGROUND: We examined the role of aerosol transmission of influenza in an acute ward setting. METHODS: We investigated a seasonal influenza A outbreak that occurred in our general medical ward (with open bay ward layout) in 2008. Clinical and epidemiological information was collected in real time during the outbreak. Spatiotemporal analysis was performed to estimate the infection risk among patients. Airflow measurements were conducted, and concentrations of hypothetical virus-laden aerosols at different ward locations were estimated using computational fluid dynamics modeling. RESULTS: Nine inpatients were infected with an identical strain of influenza A/H3N2 virus. With reference to the index patient's location, the attack rate was 20.0% and 22.2% in the "same" and "adjacent" bays, respectively, but 0% in the "distant" bay (P = .04). Temporally, the risk of being infected was highest on the day when noninvasive ventilation was used in the index patient; multivariate logistic regression revealed an odds ratio of 14.9 (95% confidence interval, 1.7-131.3; P = .015). A simultaneous, directional indoor airflow blown from the "same" bay toward the "adjacent" bay was found; it was inadvertently created by an unopposed air jet from a separate air purifier placed next to the index patient's bed. Computational fluid dynamics modeling revealed that the dispersal pattern of aerosols originated from the index patient coincided with the bed locations of affected patients. CONCLUSIONS: Our findings suggest a possible role of aerosol transmission of influenza in an acute ward setting. Source and engineering controls, such as avoiding aerosol generation and improving ventilation design, may warrant consideration to prevent nosocomial outbreaks.
Resumo:
We describe a cross-sectional, survey to identify risk factors for colonisation of neonates by extended-spectrum P-Lactamase (ESBL)-producing Klebsiella pneumoniae. This occurred following exposure to a colonised healthcare worker during an outbreak in an intermediate-risk neonatal. unit. In total, 120 neonates admitted consecutively during a three-month period were screened for ESBL-producing K. pneumoniae by rectal swabbing and 27 were identified as colonised. Multivariate analysis showed colonisation to be independently associated with use of antibiotics and absence of breastfeeding. Previous use of antibiotics presented an odds ratio (OR) of 12.3 [95% confidence interval. (Cl): 3.66-41.2, P < 0.001]. The most commonly used antibiotics were penicillin and amikacin. Breastfeeding was associated with reduced risk for colonisation (OR: 0.22; 95% Cl: 0.05-0.99; P = 0.049). Nine isotates recovered during the first stage of the outbreak and 27 isolates from surveillance cultures were typed thereafter by pulsed-field gel electrophoresis, revealing six different profiles (A-F). Clones A, C, and E were implicated in the first stage of the outbreak, whereas among the 27 strains recovered from surveillance cultures, all six clones were identified. Clone A was also found on the hand of a nursing auxiliary with onychomycosis. We concluded that prior antimicrobial use predisposed to colonisation. The possible role of breastfeeding as a protective factor needs to be further elucidated. Detection of different genotypes of ESBL-producing K. pneumonioe suggests that dissemination of mobile genetic elements bearing the ESBL gene may have been superimposed on the simple dissemination of a clone during the outbreak. (c) 2008 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: Opportunistic infections are an increasingly common problem in hospitals, and the yeast Candida parapsilosis has emerged as an important nosocomial pathogen, especially in neonatal intensive care units (NICUs) where it has been responsible for outbreak cases. Risk factors for C. parapsilosis infection in neonates include prematurity, very low birth weight, prolonged hospitalization, indwelling central venous catheters, hyperalimentation, intravenous fatty emulsions and broad spectrum antibiotic therapy. Molecular methods are widely used to elucidate these hospital outbreaks, establishing genetic variations among strains of yeast. Aims: The aim of this study was to detect an outbreak of C. parapsilosis in an NICU at the Hospital das Clinicas , Faculty of Medicine of Botucatu, a tertiary hospital located in São Paulo, Brazil, using the molecular genotyping by the microsatellite markers analysis. Methods: A total of 11 cases of fungemia caused by C. parapsilosis were identified during a period of 43 days in the NICU. To confirm the outbreak all strains were molecularly typed using the technique of microsatellites. Results: Out of the 11 yeast samples studied, nine showed the same genotypic profile using the technique of microsatellites. Conclusions: Our study shows that the technique of microsatellites can be useful for these purposes. In conclusion, we detected the presence of an outbreak of C. parapsilosis in the NICU of the hospital analyzed, emphasizing the importance of using molecular tools, for the early detection of hospital outbreaks, and for the introduction of effective preventive measures, especially in NICUs. © 2012 Revista Iberoamericana de Micología.
Resumo:
The objective of this study is to retrospectively report the results of interventions for controlling a vancomycin-resistant enterococcus (VRE) outbreak in a tertiary-care pediatric intensive care unit (PICU) of a University Hospital. After identification of the outbreak, interventions were made at the following levels: patient care, microbiological surveillance, and medical and nursing staff training. Data were collected from computer-based databases and from the electronic prescription system. Vancomycin use progressively increased after March 2008, peaking in August 2009. Five cases of VRE infection were identified, with 3 deaths. After the interventions, we noted a significant reduction in vancomycin prescription and use (75% reduction), and the last case of VRE infection was identified 4 months later. The survivors remained colonized until hospital discharge. After interventions there was a transient increase in PICU length-of-stay and mortality. Since then, the use of vancomycin has remained relatively constant and strict, no other cases of VRE infection or colonization have been identified and length-of-stay and mortality returned to baseline. In conclusion, we showed that a bundle intervention aiming at a strict control of vancomycin use and full compliance with the Hospital Infection Control Practices Advisory Committee guidelines, along with contact precautions and hand-hygiene promotion, can be effective in reducing vancomycin use and the emergence and spread of vancomycin-resistant bacteria in a tertiary-care PICU.
Resumo:
Healthcare workers are thought to play a role in nosocomial transmission of norovirus, but the level and direction of norovirus transmission between patients and healthcare workers in sustaining transmission during an outbreak have not been quantified.
Resumo:
In this study, we present a trilocus sequence typing (TLST) scheme based on intragenic regions of two antigenic genes, ace and salA (encoding a collagen/laminin adhesin and a cell wall-associated antigen, respectively), and a gene associated with antibiotic resistance, lsa (encoding a putative ABC transporter), for subspecies differentiation of Enterococcus faecalis. Each of the alleles was analyzed using 50 E. faecalis isolates representing 42 diverse multilocus sequence types (ST(M); based on seven housekeeping genes) and four groups of clonally linked (by pulsed-field gel electrophoresis [PFGE]) isolates. The allelic profiles and/or concatenated sequences of the three genes agreed with multilocus sequence typing (MLST) results for typing of 49 of the 50 isolates; in addition to the one exception, two isolates were found to have identical TLST types but were single-locus variants (differing by a single nucleotide) by MLST and were therefore also classified as clonally related by MLST. TLST was also comparable to PFGE for establishing short-term epidemiological relationships, typing all isolates classified as clonally related by PFGE with the same type. TLST was then applied to representative isolates (of each PFGE subtype and isolation year) of a collection of 48 hospital isolates and demonstrated the same relationships between isolates of an outbreak strain as those found by MLST and PFGE. In conclusion, the TLST scheme described here was shown to be successful for investigating short-term epidemiology in a hospital setting and may provide an alternative to MLST for discriminating isolates.
Resumo:
The dengue virus has a single-stranded positive-sense RNA genome of similar to 10.700 nucleotides with a single open reading frame that encodes three structural (C, prM, and E) and seven nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins. It possesses four antigenically distinct serotypes (DENV 1-4). Many phylogenetic studies address particularities of the different serotypes using convenience samples that are not conducive to a spatio-temporal analysis in a single urban setting. We describe the pattern of spread of distinct lineages of DENV-3 circulating in Sao Jose do Rio Preto, Brazil, during 2006. Blood samples from patients presenting dengue-like symptoms were collected for DENV testing. We performed M-N-PCR using primers based on NS5 for virus detection and identification. The fragments were purified from PCR mixtures and sequenced. The positive dengue cases were geo-coded. To type the sequenced samples, 52 reference sequences were aligned. The dataset generated was used for iterative phylogenetic reconstruction with the maximum likelihood criterion. The best demographic model, the rate of growth, rate of evolutionary change, and Time to Most Recent Common Ancestor (TMRCA) were estimated. The basic reproductive rate during the epidemics was estimated. We obtained sequences from 82 patients among 174 blood samples. We were able to geo-code 46 sequences. The alignment generated a 399-nucleotide-long dataset with 134 taxa. The phylogenetic analysis indicated that all samples were of DENV-3 and related to strains circulating on the isle of Martinique in 2000-2001. Sixty DENV-3 from Sao Jose do Rio Preto formed a monophyletic group (lineage 1), closely related to the remaining 22 isolates (lineage 2). We assumed that these lineages appeared before 2006 in different occasions. By transforming the inferred exponential growth rates into the basic reproductive rate, we obtained values for lineage 1 of R(0) = 1.53 and values for lineage 2 of R(0) = 1.13. Under the exponential model, TMRCA of lineage 1 dated 1 year and lineage 2 dated 3.4 years before the last sampling. The possibility of inferring the spatio-temporal dynamics from genetic data has been generally little explored, and it may shed light on DENV circulation. The use of both geographic and temporally structured phylogenetic data provided a detailed view on the spread of at least two dengue viral strains in a populated urban area.
Resumo:
To report the isolation of six Staphylococcus hominis subsp. novobiosepticus (SHN) strains from hospitalized patients with bloodstream infections in two Brazilian hospitals and to characterize their susceptibility profile to several antimicrobials. Species identification was performed by biochemical methods and sodA gene sequencing. The MICs of antimicrobials were determined by broth and agar dilution methods and by Etest. Isolates were typed by PFGE and PCR amplification was used to detect the ccr gene complex and the mec class. Morphometric evaluation of cell wall was performed by transmission electron microscopy (TEM). Susceptibility profiles indicated that the majority of isolates (five) were multidrug-resistant. Overlapping and multiplex PCR showed that five out of the six strains harboured SCCmec type III with class A mec and type 3 ccr. The initial vancomycin MIC value of 4 mg/L for these strains increased to 16-32 mg/L after growth for 10 days in BHI broth supplemented with this antimicrobial. TEM indicated that vancomycin resistance was associated with cell wall thickening and to another mechanism not fully elucidated. Only one SHN strain was oxacillin- and vancomycin-susceptible. The nosocomial infections in at least five of the patients from both hospitals were caused by a single clone of SHN. It is very important to consider SHN strains as the cause of nosocomial infections. The clinical implications resulting from the pattern of multidrug resistance in these strains may be complicated by the emergence of vancomycin resistance.
Resumo:
Blood disease of banana is substantiated by using the polymerase chain reaction for the first time from Irian Jaya, Indonesia.
Resumo:
Background: In Brazil hospital malnutrition is highly prevalent. physician awareness of malnutrition is low, and nutrition therapy is underprescribed. One alternative to approach this problem is to educate health care providers in clinical nutrition. The present study aims to evaluate the effect of an intensive education course given to health care professionals and students on the diagnosis ability concerning to hospital malnutrition. Materials and methods: An intervention study based on a clinical nutrition educational program, offered to medical and nursing students and professionals, was held in a hospital of the Amazon region. Participants were evaluated through improvement of diagnostic ability, according to agreement of malnutrition diagnosis using Subjective Global Assessment before and after the workshop, as compared to independent evaluations (Kappa Index, k). To evaluate the impact of the educational intervention on the hospital malnutrition diagnosis, medical records were reviewed for documentation of parameters associated with nutritional status of in-patients. The SPSS statistical software package was used for data analysis. Results: A total of 165 participants concluded the program. The majority (76.4%) were medical and nursing students. Malnutrition diagnosis improved after the course (before k = 0.5; after k = 0.64; p < 0.05). A reduction of false negatives from 50% to 33.3% was observed. During the course, concern of nutritional diagnosis was increased W = 17.57; p < 0.001) and even after the course, improvement on the height measurement was detected chi(2) 12.87;p < 0.001). Conclusions: Clinical nutrition education improved the ability of diagnosing malnutrition; however the primary impact was on medical and nursing students. To sustain diagnostic capacity a clinical nutrition program should be part of health professional curricula and be coupled with continuing education for health care providers.