998 resultados para NORTHERN INDIA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The response of monsoon circulation in the northern and southern hemisphere to 6 ka orbital forcing has been examined in 17 atmospheric general circulation models and 11 coupled ocean–atmosphere general circulation models. The atmospheric response to increased summer insolation at 6 ka in the northern subtropics strengthens the northern-hemisphere summer monsoons and leads to increased monsoonal precipitation in western North America, northern Africa and China; ocean feedbacks amplify this response and lead to further increase in monsoon precipitation in these three regions. The atmospheric response to reduced summer insolation at 6 ka in the southern subtropics weakens the southern-hemisphere summer monsoons and leads to decreased monsoonal precipitation in northern South America, southern Africa and northern Australia; ocean feedbacks weaken this response so that the decrease in rainfall is smaller than might otherwise be expected. The role of the ocean in monsoonal circulation in other regions is more complex. There is no discernable impact of orbital forcing in the monsoon region of North America in the atmosphere-only simulations but a strong increase in precipitation in the ocean–atmosphere simulations. In contrast, there is a strong atmospheric response to orbital forcing over northern India but ocean feedback reduces the strength of the change in the monsoon although it still remains stronger than today. Although there are differences in magnitude and exact location of regional precipitation changes from model to model, the same basic mechanisms are involved in the oceanic modulation of the response to orbital forcing and this gives rise to a robust ensemble response for each of the monsoon systems. Comparison of simulated and reconstructed changes in regional climate suggest that the coupled ocean–atmosphere simulations produce more realistic changes in the northern-hemisphere monsoons than atmosphere-only simulations, though they underestimate the observed changes in precipitation in all regions. Evaluation of the southern-hemisphere monsoons is limited by lack of quantitative reconstructions, but suggest that model skill in simulating these monsoons is limited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Asian summer monsoon is a high dimensional and highly nonlinear phenomenon involving considerable moisture transport towards land from the ocean, and is critical for the whole region. We have used daily ECMWF reanalysis (ERA-40) sea-level pressure (SLP) anomalies to the seasonal cycle, over the region 50-145°E, 20°S-35°N to study the nonlinearity of the Asian monsoon using Isomap. We have focused on the two-dimensional embedding of the SLP anomalies for ease of interpretation. Unlike the unimodality obtained from tests performed in empirical orthogonal function space, the probability density function, within the two-dimensional Isomap space, turns out to be bimodal. But a clustering procedure applied to the SLP data reveals support for three clusters, which are identified using a three-component bivariate Gaussian mixture model. The modes are found to appear similar to active and break phases of the monsoon over South Asia in addition to a third phase, which shows active conditions over the Western North Pacific. Using the low-level wind field anomalies the active phase over South Asia is found to be characterised by a strengthening and an eastward extension of the Somali jet whereas during the break phase the Somali jet is weakened near southern India, while the monsoon trough in northern India also weakens. Interpretation is aided using the APHRODITE gridded land precipitation product for monsoon Asia. The effect of large-scale seasonal mean monsoon and lower boundary forcing, in the form of ENSO, is also investigated and discussed. The outcome here is that ENSO is shown to perturb the intraseasonal regimes, in agreement with conceptual ideas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large fine mode-dominated aerosols (submicron radius) in size distributions retrieved from the Aerosol Robotic Network (AERONET) have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low-altitude cloud such as stratocumulus or fog. Retrievals with cloud-processed aerosol are sometimes bimodal in the accumulation mode with the larger-size mode often similar to 0.4-0.5 mu m radius (volume distribution); the smaller mode, typically similar to 0.12 to similar to 0.20 mu m, may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the "shoulder" of larger-size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near-cloud environment and higher overall AOD than typically obtained from remote sensing owing to bias toward sampling at low cloud fraction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

by John Cary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A list of the inscriptions of Northern India in Brahmi and its derivative scripts, from about 200 A. C., by D. R. Bhandarkar, issued as appendix to v. 19-23.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accompanied by "Second supplementary catalogue of Bengali books in the library of the British museum acquired during the years 1911-1934. Comp. by the late J. F. Blumhardt, M.A. and J. V. S. Wilkinson. Printed by order of the Trustees." (2 p. L., 678 col., [1] p. 29 cm.) Published: London, British museum; [etc., etc.] 1939.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accompanied by "A supplementary catalogue of Hindustani books in the library of the British museum acquired during the years 1889-1908. By J. F. Blumhardt. Printed by order of the Trustees." (vi p., 1 l., 678 col. 29 x 22 cm.) Published: London, British museum [etc.] 1909.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Indian winter monsoon (IWM) is a key component of the seasonally changing monsoon system that affects the densely populated regions of South Asia. Cold winds originating in high northern latitudes provide a link of continental-scale Northern Hemisphere climate to the tropics. Western Disturbances (WD) associated with the IWM play a critical role for the climate and hydrology in northern India and the western Himalaya region. It is vital to understand the mechanisms and teleconnections that influence IWM variability to better predict changes in future climate. Here we present a study of regionally calibrated winter (January) temperatures and according IWM intensities, based on a planktic foraminiferal record with biennial (2.55 years) resolution. Over the last ~250 years, IWM intensities gradually weakened, based on the long-term trend of reconstructed January temperatures. Furthermore, the results indicate that IWM is connected on interannual- to decadal time scales to climate variability of the tropical and extratropical Pacific, via El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). However, our findings suggest that this relationship appeared to begin to decouple since the beginning of the 20th century. Cross-spectral analysis revealed that several distinct decadal-scale phases of colder climate and accordingly more intense winter monsoon centered at the years ~1800, ~1890 and ~1930 can be linked to changes of the North Atlantic Oscillation (NAO).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Himalayan orogen is the result of the collision between the Indian and Asian continents that began 55-50 Ma ago, causing intracontinental thrusting and nappe formation. Detailed mapping as well as structural and microfabric analyses on a traverse from the Tethyan Himalaya southwestward through the High Himalayan Crystalline and the Main Central Thrust zone (MCT zone) to the Lesser Himalayan Sequence in the Spiti-eastern Lahul-Parvati valley area reveal eight main phases of deformation, a series of late stage phases and five stages of metamorphic crystallization. This sequence of events is integrated into a reconstruction of the tectonometamorphic evolution of the Himalayan orogen in northern Himachal Pradesh. The oldest phase D-1 is preserved as relies in the High Himalayan Crystalline. Its deformational conditions are poorly known, but the metamorphic evolution is well documented by a prograde metamorphism reaching peak conditions within the upper amphibolite facies. This indicates that D-1 was an important tectonometamorphic event including considerable crustal thickening. The structural, metamorphic and sedimentary record suggest that D-1 most probably represents an early stage of continental collision. The first event clearly attributed to the collision between India and Asia is documented by two converging nappe systems, the NE-verging Shikar Beh Nappe and the SW-verging north Himalayan nappes. The D-2 Shikar Beh Nappe is characterized by isoclinal folding and top-to-the NE shearing, representing the main deformation in the High Himalayan Crystalline. D-2 also caused the main metamorphism in the High Himalayan Crystalline that was of a Barrovian-type, reaching upper amphibolite facies peak conditions. The Shikar Beh Nappe is interpreted to have formed within the Indian crust SW of the subduction zone. Simultaneously with NE-directed nappe formation, incipient subduction of India below Asia caused stacking of the SW-verging north Himalayan Nappes, that were thrust from the northern edge of the subducted continent toward the front of the Shikar Beh Nappe. As a result, the SW-verging folds of the D-3 Main Fold Zone formed in the Tethyan Himalaya below the front of the north Himalayan nappes. D-3 represents the main deformation in the Tethyan Himalaya, associated with a greenschist facies metamorphism. Folding within the Main Fold Zone subsequently propagated toward SW into the High Himalayan Crystalline, where it overprinted the preexisting D-2 structures. After subduction at the base of the north Himalayan nappes, the subduction zone stepped to the base of the High Himalayan Crystalline, where D-3 folds were crosscut by SW-directed D-4 thrusting. During D-4, the Crystalline Nappe, comprising the Main Fold Zone and relies of the Shikar Beh Nappe was thrust toward SW over the Lesser Himalayan Sequence along the 4 to 5 kms thick Main Central Thrust zone. Thrusting was related to a retrograde greenschist facies overprint at the base of the Crystalline Nappe and to pro-grade greenschist facies conditions in the Lesser Himalayan Sequence. Simultaneously with thrusting at the base of the Crystalline Nappe, higher crustal levels were affected by NE-directed D-5 normal extensional shearing and by dextral strike-slip motion, indicating that the high-grade metamorphic Crystalline Nappe was extruded between the low-grade metamorphic Lesser Himalayan Sequence at the base and the north Himalayan nappes at the top. The upper boundary of the Crystalline Nappe is not clearly delimited and passes gradually into the low-grade rocks at the front of the north Himalayan nappes. Extrusion of the Crystalline Nappe was followed by the phase D-6, characterized by large-scale, upright to steeply inclined, NE-verging folds and by another series of normal and extensional structures D-7+D-8 that may be related to ongoing extrusion of the Crystalline Nappe. The late stage evolution is represented by the phases D-A and D-B that indicate shortening parallel to the axis of the mountain chain and by D-C that is interpreted to account for the formation of large-scale domes with NNW-SSE-trending axes, an example of which is exposed in the Larji-Kullu-Rampur tectonic window.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present investigation, an attempt is made to document various episodes of transgression and regression during the late Quaternary period from the study of coastal and shelf sequences extending from the inland across the beach to the shelf domain. Shore parallel beach ridges with alternating swales and occurrence of strand line deposits on the shelf make the northern Kerala coast an ideal natural laboratory for documenting the morpho-dynamic response of the coast to the changing sea level. The objectives of the study are lithographic reconstruction of environments of deposition from the coastal plain and shelf sequences; documentation of episodes of transgression and regression by studying different coastal plain sequences and shelf deposits and evolve a comprehensive picture of late Quaternary coastal evolution and sea level changes along the northern Kerala coast by collating morphological, lithological and geochronological evidences from the coastal plain and shelf sequences. The present study is confined to two shore-normal east-west trending transects, Viz. Punjavi and Onakkunnu, in the northern Kerala coast.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nearshore marine ecosystem is a dynamic environment impacted by many activities, especially the coastal waters and sediments contiguous to major urban areas. Although heavy metals are natural constituents of the marine environment, inputs are considered to be conservative pollutants and are potentially toxic, accumulate in the sediment, are bioconcentrated by organisms and may cause health problems to humans via the food chain. A variety of metals in trace amounts are essential for biological processes in all organisms, but excessive levels can be detrimental by acting as enzyme inhibitors. Discharge of industrial wastewater, agriculture runoff and untreated sewage pose a particularly serious threat to the coastal environment of Kerala, but there is a dearth of studies in documenting the contaminant metals. This study aimed principally to assess such contamination by examining the results of heavy metal (Cu, Pb, Cr, Ni, Zn, Cd and Hg) analysis in seawater, sediment and benthic biota from a survey of five transects along the central and northern coast of Kerala in 2008 covering a 10.0 km stretch of near shore environment in each transect. Trophic transfer of metal contaminants from aquatic invertebrates to its predators was also assessed, by employing a suitable benthic food chain model in order to understand which all metals are undergoing biotransference (transfer of metals from a food source to consumer).The study of present contamination levels will be useful for potential environmental remediation and ecosystem restoration at contaminated sites and provides a scientific basis for standards and protective measures for the coastal waters and sediments. The usefulness of biomonitor proposed in this study would allow identification of different bioavailable metals as well as provide an assessment of the magnitude of metal contamination in the coastal marine milieu. The increments in concentration of certain metals between the predator and prey discerned through benthic food chain can be interpreted as evidence of biotransference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bihar, India has been in the grip of kala-azar for many years. Its rampant and severe spread has made life miserable in most parts of the state. Such conditions require a comprehensive understanding of this affliction. The numbers coming out of the districts prone to the disease in the north and south Ganges have provided us with several startling revelations, as there are striking uniformities on both sides, including similar vegetation, water storage facilities, house construction and little change in risk factors. The northern areas have been regularly sprayed with DDT since 1977, but eradication of the disease appears to be a distant dream. In 2007 alone, there were as many as 37,738 cases in that region. In contrast, the southern districts of Patna and Nalanda have never had the disease in its epidemic form and endemic disease has been present in only some pockets of the two districts. In those cases, two rounds of spraying with DDT had very positive results, with successful control and no new established foci. In addition, an eleven-year longitudinal study of the man hour density and house index for the vector Phlebotomus argentipes demonstrated that they were quite high in Patna and Nalanda and quite low in north Bihar. Given these facts, an attempt has been made to unravel the role of P. argentipes saliva (salivary gland) in the epidemiology of kala-azar. It was determined that patchy DDT spraying should be avoided for effective control of kala-azar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two granitic plutons, the Tso Morari gneiss and the Rupshu metagranite, crop out in the Tso Morari area. The Polokongka La granite, classically interpreted as a young intrusion in the Tso Morari gneiss, has been recognized as the undeformed facies of the latter. Conventional isotope dilution U-Pb zircon dating on single-grain and small multi-grain fractions yielded magmatic ages of 479 +/- 2 Ma for the Tso Morari gneiss and the Polokongka La granite, and 482.5 +/- 1 Ma for the Rupshu granite. There is a great difference in zircon morphology between the Tso Morari gneiss (peraluminous type) and the Rupshu granite (alkaline type). This difference is confirmed by whole-rock chemistry. The Tso Morari gneiss is a typical deformed S-type granite, resulting from crustal anatexis. On the other hand, the Rupshu granite is an essentially metaluminous alkali-calcic intrusion derived from a different source material. Data compilation from other Himalayan Cambro-Ordovician granites reveals huge and widespread magmatic activity all along and beyond the northern Indian plate between 570 and 450 Ma, with a peak at 500-480 Ma. A major, continental-scale tectonic event is required to generate such a large magmatic belt; it has been tentatively compared to the Variscan post-orogenic extensional regime of Western Europe, as a late evolution stage of a Pan-African orogenic event.