950 resultados para NONLINEAR WAVES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the propagation of waves in an elastic tube filled with an inviscid fluid. We consider the case of inhomogeneity whose mechanical and geometrical properties vary in space. We deduce a system of equations of the Boussinesq type as describing the wave propagation in the tube. Numerical simulations of these equations show that inhomogeneities prevent separation of right-going from left-going waves. Then reflected and transmitted coefficients are obtained in the case of localized constriction and localized rigidity. Next we focus on wavetrains incident on various types of anomalous regions. We show that the existence of anomalous regions modifies the wavetrain patterns. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The propagation of inhomogeneous, weakly nonlinear waves is considered in a cochlear model having two degrees of freedom that represent the transverse motions of the tectorial and basilar membranes within the organ of Corti. It is assumed that nonlinearity arises from the saturation of outer hair cell active force generation. I use multiple scale asymptotics and treat nonlinearity as a correction to a linear hydroelastic wave. The resulting theory is used to explain experimentally observed features of the response of the cochlear partition to a pure tone, including: the amplification of the response in a healthy cochlea vs a dead one; the less than linear growth rate of the response to increasing sound pressure level; and the amount of distortion to be expected at high and low frequencies at basal and apical locations, respectively. I also show that the outer hair cell nonlinearity generates retrograde waves.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"February 1988."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cilia and flagella are hairlike extensions of eukaryotic cells which generate oscillatory beat patterns that can propel micro-organisms and create fluid flows near cellular surfaces. The evolutionary highly conserved core of cilia and flagella consists of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The axoneme is an actively bending structure whose motility results from the action of dynein motor proteins cross-linking microtubule doublets and generating stresses that induce bending deformations. The periodic beat patterns are the result of a mechanical feedback that leads to self-organized bending waves along the axoneme. Using a theoretical framework to describe planar beating motion, we derive a nonlinear wave equation that describes the fundamental Fourier mode of the axonemal beat. We study the role of nonlinearities and investigate how the amplitude of oscillations increases in the vicinity of an oscillatory instability. We furthermore present numerical solutions of the nonlinear wave equation for different boundary conditions. We find that the nonlinear waves are well approximated by the linearly unstable modes for amplitudes of beat patterns similar to those observed experimentally.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We review recent progress in the research on nonlinear mechanisms of pulse generation in passively mode-locked fibre lasers. These include parabolic self-similar pulse mode-locking, a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on the possibility of achieving various regimes of advanced temporal waveform generation in a mode-locked fibre laser by inclusion of a spectral filter into the laser cavity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic “secular variation” in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher-ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long-standing theoretical insufficiency by invoking a compact exact n-ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third-ordered perturbative solution, that leads to a seamless extension to higher-order (e.g., fifth-order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desired higher-ordered expansion may be compacted within the same representation, but without any aperiodicity in the spectral pattern of the wave guides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of a film falling down an inclined plane is revisited in the presence of imposed shear stress. Earlier studies regarding this topic (Smith, J. Fluid Mech., vol. 217, 1990, pp. 469-485; Wei, Phys. Fluids, vol. 17, 2005a, 012103), developed on the basis of a low Reynolds number, are extended up to moderate values of the Reynolds number. The mechanism of the primary instability is provided under the framework of a two-wave structure, which is normally a combination of kinematic and dynamic waves. In general, the primary instability appears when the kinematic wave speed exceeds the speed of dynamic waves. An equality criterion between their speeds yields the neutral stability condition. Similarly, it is revealed that the nonlinear travelling wave solutions also depend on the kinematic and dynamic wave speeds, and an equality criterion between the speeds leads to an analytical expression for the speed of a family of travelling waves as a function of the Froude number. This new analytical result is compared with numerical prediction, and an excellent agreement is achieved. Direct numerical simulations of the low-dimensional model have been performed in order to analyse the spatiotemporal behaviour of nonlinear waves by applying a constant shear stress in the upstream and downstream directions. It is noticed that the presence of imposed shear stress in the upstream (downstream) direction makes the evolution of spatially growing waves weaker (stronger).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellular neural networks (CNNs) have locally connected neurons. This characteristic makes CNNs adequate for hardware implementation and, consequently, for their employment on a variety of applications as real-time image processing and construction of efficient associative memories. Adjustments of CNN parameters is a complex problem involved in the configuration of CNN for associative memories. This paper reviews methods of associative memory design based on CNNs, and provides comparative performance analysis of these approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Gross-Pitaevskii equation for a Bose-Einstein condensate confined in an elongated cigar-shaped trap is reduced to an effective system of nonlinear equations depending on only one space coordinate along the trap axis. The radial distribution of the condensate density and its radial velocity are approximated by Gaussian functions with real and imaginary exponents, respectively, with parameters depending on the axial coordinate and time. The effective one-dimensional system is applied to a description of the ground state of the condensate, to dark and bright solitons, to the sound and radial compression waves propagating in a dense condensate, and to weakly nonlinear waves in repulsive condensate. In the low-density limit our results reproduce the known formulas. In the high-density case our description of solitons goes beyond the standard approach based on the nonlinear Schrodinger equation. The dispersion relations for the sound and radial compression waves are obtained in a wide region of values of the condensate density. The Korteweg-de Vries equation for weakly nonlinear waves is derived and the existence of bright solitons on a constant background is predicted for a dense enough condensate with a repulsive interaction between the atoms.